首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
Silica-PMMA nanocomposites with different silica quantities were prepared by a melt compounding method. The effect of silica amount, in the range 1-5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of PMMA was investigated by means of transmission electron microscopy (TEM), X-ray diffractometry (XRD), dynamic mechanical analysis (DMA), thermogravimetric analyses (TGA), Fourier-transform infrared spectroscopy (FTIR), 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (13C{1H} CP-MAS NMR) and measures of proton spin-lattice relaxation time in the rotating frame (T1ρ(H)), in the laboratory frame (T1(H)) and cross-polarization times (TCH). Results showed that silica nanoparticles are well dispersed in the polymeric matrix whose structure remains amorphous. The degradation of the polymer occurs at higher temperature in the presence of silica because of the interaction between the two components.  相似文献   

3.
 The effect of varying the oxidant, monomer and silica sol concentrations, silica sol diameter, polymerization temperature, stirring rate and oxidant type, on the particle size, polypyrrole content and conductivity of the resulting polypyrrole– silica colloidal nanocomposites has been studied. Surprisingly, nanocomposite formation appears to be relatively insensitive to most of the above synthesis parameters. One synthesis parameter which does have a significant and reproducible effect is the stirring rate: smaller, more monodisperse nanocomposite particles are obtained from rapidly stirred reaction solutions. However, this effect is only observed for the (NH4)2S2O8 oxidant. An alternative oxidant, H2O2/Fe3+, was found to give nanocomposites of similar particle size, polypyrrole content and conductivity to those obtained using the (NH4)2S2O8 oxidant. The colloid stability of these polypyrrole–silica nanocomposite particles depends on their silica content. The colloid stability of a silica-rich nanocomposite prepared using the (NH4)2S2O8 oxidant in the presence of electrolyte was comparable to that of a silica sol, whereas a polypyrrole-rich nanocomposite prepared using FeCl3 had markedly poorer colloid stability under these conditions. These observations are consistent with a charge stabilization mechanism for these nanocomposite particles. Received: 5 March 1998 Accepted: 27 April 1998  相似文献   

4.
In this work, two formulations of pectin/cellulose nanocrystals/glycerol nanocomposites were employed as packaging to extend storage life of strawberries. The effects of incorporating cellulose nanocrystals extracted from bleached Kraft wood pulp on the mechanical, thermal, and barrier properties of pectin‐based nanocomposites were evaluated. Nanocomposite films with different filler levels of cellulose nanocrystals (1, 2, 4 and 8% w/w) were prepared by casting. Compared with the neat film of pectin, improvements in the mechanical properties of the nanocomposites were observed, but these films became fragile. To improve the film flexibility, glycerol was added as a plasticizer and then new variations in the mechanical, thermal, and barrier properties of these nanocomposites were evaluated. The effects of nanocomposite films on storability of strawberries were compared with Poly vinyl chloride packaging films. The Poly vinyl chloride film and the nanocomposites showed similar behavior regarding weight loss by the strawberries, especially in the initial days of storage. The results show that pectin/cellulose nanocrystals/glycerol nanocomposites could be considered as a viable packaging alternative for replaced the Poly vinyl cloride film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The emulsifying and stabilizing ability of several hydrophobic (insoluble in water and soluble in volatile organic solvents) polymers, such as Eudragit RL, Eudragit RS, PLGA, PCL, and their mixtures, with regard to the methylene chloride (MC)-in-water mini-emulsions, has been compared to the viscosity of MC solutions and to the properties of adsorption and spread monolayers of these polymers.

Eudragits RS and RL contain 2.5 and 5 mol% of pendent cationic trimethylammonium (TMA) groups per 164 g/mol segments, whereas PLGA and PCL contain 1 and 2 polar carbonyl groups per 130 and 114 g/mol, respectively. The electrostatic attraction between the dipoles, formed by TMA groups and the condensed counter ions in the MC solutions, leads to the contraction of macromolecular coils of Eudragits, whereas the PLGA and PCL macromolecules, interacting by low polar carbonyl groups (with dipole moment μ = 2.7 D) retain more extended conformation in MC. This explains why the characteristic viscosities [η] of MC solutions are much lower for the former polymers (0.1 dL/g) with regard to PLGA and PCL solutions whose [η] is equal to 0.3 and 0.6 dL/g, respectively.

The ionization of TMA groups in contact with the water phase leads to the irreversible adsorption of Eudragits at the MC/water interface and to high decrease of the interfacial tension γ (down to 4 mN/m for the 5% MC solutions). Whereas PLGA and PCL possessing low polar carbonyl groups adsorb poorly at the MC/water interface exhibiting γ  28 mN/m. Higher stability of spread monolayers of Eudragits (π*  40 mN/m) with regard to PLGA and PCL (π* < 20 mN/m) correlates well with higher interfacial activity of the former with regard to the later. The higher surface potential ΔV of Eudragits (0.9 V) with regard to PLGA (0.3 V) and PCL (0.4 V) is explained by the formation of electric double layer (DL) by the former, whereas the later contribute to the ΔV only by cumulative dipole moments of carbonyl groups. The experimental values of surface potentials correlate well with the Gouy–Chapman model of the DL and the Helmholtz model of the monolayer.

The ensemble of experimental results leads to the conclusion that higher emulsifying and stabilizing ability of Eudragits with regard to PLGA and PCL is due to higher adsorption activity of the former which form the corona of polymeric chains with ionized TMA groups around the droplets. It can be postulated that Eudragit polymers have good surface active properties which may allow manufacturing of biocompatible nanoparticles by emulsification–solvent evaporation method without surfactants.  相似文献   


6.
The lead dioxide electrode (PbO2) with Ti substrate and SnO2‐Sb2O5 intermediate layer was doped by F ion through the potentiostatic anode co‐deposition method. The content of F in the coating can be controlled by adjusting deposition potential. The effect of F doping on the composition, surface morphology and electrochemical properties of the PbO2 electrode was characterized by X‐ray diffraction, scanning electron microscope, X‐ray photoelectron spectroscopy and electrochemical measurement methods. The results have confirmed that the content of β‐PbO2 increases with increasing that of F, and the doping can make the β‐PbO2 grains become fine and the electrode surface become smooth; the specific surface areas and conductivity increase, and the initial potential of oxygen evolution shifts toward positive direction compared with the free‐doped PbO2 electrode; the oxygen evolution potential increases with the increasing of the Fcontent in the PbO2 film electrode. The bulk electrolysis result demonstrated that the performances of the F‐PbO2 electrode for anodic oxidation aniline have been improved to some extent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号