首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dynamics of water molecules in the layered vanadium pentoxide hydrate, V(2)O(5).nH(2)O, were studied by quasi-elastic neutron scattering (QENS) measurements. Heterogeneity of the dynamic properties was confirmed by alpha-relaxation model analysis. Translational diffusion of monolayer and double-layer water molecules is by site-to-site diffusion and is reduced relative to that of bulk water. Water molecules lose their mobility markedly and solidify with decreasing temperature. However, mobile water remains at 253 K. Rotational diffusion coefficients are unaffected by confinement and are very similar to the bulk values determined at temperatures in the range 253-298 K. The dynamic speed characterized by QENS is much faster than that expected from the data determined by deuterium NMR (DNMR) measurements at low temperatures.  相似文献   

2.
Quasielastic neutron scattering (QENS) spectra of water-filled MCM-41 samples (pore diameters: 21.4 and 28.4 Angstrom) were measured over the temperature range 238-298 K and the momentum transfer range 0.31-0.99 A(-1) to investigate the dynamics of confined water molecules. The spectra, which consist mainly of contributions from the translational diffusion of water molecules, were analyzed by using the Lorentzian and the stretched exponential functions. Comparison of the fits indicated that the latter analysis is more reliable than the former one. The fraction of immobile water molecules located in the vicinity of the pore walls, which give an elastic component, was found to be 0.044-0.061 in both pores. The stretch exponent beta was determined as 0.66-0.80. It was shown that the translational diffusion of water molecules in the pores is decelerated by confinement and that the deceleration becomes marked with a decrease in pore size. The ratios of the translational diffusion coefficient D(T) of confined water to that of bulk water at room temperature were within a range of 0.47-0.63.  相似文献   

3.
A recently proposed two-dimensional (2)H NMR experiment is used to measure the (2)H (spin I=1) quadrupolar and paramagnetic shift anisotropy interactions in powdered CuCl(2).2D(2)O as a function of temperature. The principal components of the quadrupolar and paramagnetic shift anisotropy tensors and the Euler angles describing the orientations of the tensors in the molecular frame are determined at each temperature. For this purpose an analytical approach is introduced to extract desired parameters from motionally averaged two-dimensional line shapes where the averaging is introduced by rapid 180 degrees flips around C(2) axes of D(2)O molecules. This approach can be readily applied to study various materials containing water of crystallization. It is also clearly shown that the rapid continuous rotation of D(2)O molecules around their C(2) axes is not taking place in the studied solid in the range of temperatures between 209 and 344 K. Once the paramagnetic shift anisotropy of a deuterium atom is measured accurately it is used to estimate the distance between deuterium and the nearest copper atom bearing an unpaired electron. Excellent agreement is found between structural parameters obtained in this study and those provided by neutron and x-ray diffraction, showing that the paramagnetic shift anisotropy is a sensitive probe of distances in paramagnetic solids.  相似文献   

4.
The magnetic orientation has been studied for paramagnetic organic radical crystals 1,3,5-triphenyl-6-oxoverdazyl and 1,5-di-p-tolyl-3-phenyl-6-oxoverdazyl in magnetic fields of 2-80 kOe at temperatures of 77-343 K. The X-ray diffraction measurement has revealed that the crystals are oriented with the crystallographic c axis perpendicular to the field. The anisotropic diamagnetic susceptibility arising from the benzene rings has been estimated for the crystals along the principal magnetic chi 1, chi 2, and chi 3 axes. (The chi 1 axis is at a small angle to the a axis in the monoclinic ac plane, and the chi 3 axis is along the b axis.) Since the paramagnetic susceptibility originating from the verdazyl ring is isotropic (though a large absolute value), it is shown that the magnetic orientation occurs by the anisotropy of the diamagnetic susceptibility in the crystals. The diamagnetic susceptibility is found to have a relation of chi 2 < chi 1 < chi 3 < 0.  相似文献   

5.
To learn more about the out-of-plane deformation of polymer lamellae during drawing, we have measured the resistance to shear along various planes in uniaxially oriented polyethylene and polypropylene. Fissures parallel to the orientation axis in oriented materials always cause too small an experimental value for the resistance of crystal glide parallel to the chain axes, but a rough estimate for the resistance to crystal glide is obtained using the elastic anisotropy. Also, the results suggest that kinking can be easier than glide when glide is inhibited by tie molecules.  相似文献   

6.
7.
A new uranium(VI) silicate, K5(UO2)2[Si4O12(OH)], has been synthesized by a high-temperature, high-pressure hydrothermal method. It crystallizes in the orthorhombic space group Pbcm (No. 57) with a = 13.1274(7) A, b = 12.2635(7) A, c = 22.233(1) A, and Z= 8. Its structure consists of unbranched chains of four silicate tetrahedra extending along the b axis linked together via corner-sharing by UO6 tetragonal bipyramids to form a 3-D framework, which delimits intersecting channels along the c and b axes to accommodate K+ cations. A hydrogen atom is bonded to a terminal oxygen of a terminal silicate in the oligosilicate anion. Adjacent chains are linked along the b axis by hydrogen bonds. The sample shows a resonance at 14.7 ppm the 1H MAS NMR spectrum, which is assigned to the SiO...HOSi hydrogen bond. A comparison of uranyl silicate structures is made.  相似文献   

8.
Incoherent inelastic neutron scattering experiments were performed on Na0.7CoO2 and Na0.28CoO2.1.3H2O in order to understand how the dynamics of the hydrogen-bond network of water is modified in the triangular crystalline lattice NaxCoO2.yH2O. Using quasi-elastic neutron scattering (QENS), we were able to differentiate between two types of proton dynamics: a fast process (due to water strongly bound into the sodium cobalt oxyhydrate structure during the hydration process) and a slow process (likely attributable to a collective motion). High-resolution QENS experiments, carried out on Na0.28CoO2.1.3H2O, show that, at temperatures above 310 K, the water dynamics can be well-described by a random jump diffusion model characterized by a diffusion constant equal to 0.9 x 10(-9)m2/s, which is significantly lower than the rate of diffusion for bulk water. Furthermore, our results indicate that, at room temperature, the sodium ions have no influence on the rotational dynamics of the "fast" water molecules.  相似文献   

9.
10.
The present paper shows high-resolution quasi-elastic neutron scattering (QENS) findings on homologues disaccharides (i.e. trehalose, maltose, and sucrose)-water mixtures as a function of temperature. The QENS measurements were performed on both partially deuterated disaccharides in D2O and on hydrogenated disaccharides in H2O to separate the solute dynamics from that of the solvent. The results highlight a noticeable disaccharide kosmotrope character, with results more marked for trehalose. Such evidence accounts for its higher bioprotective effectiveness.  相似文献   

11.
Wang XY  Wang ZM  Gao S 《Inorganic chemistry》2008,47(13):5720-5726
The magnetic properties of Co(N 3) 2(4acpy) 2 have been thoroughly reexamined on both powder and well-oriented single crystal samples. This azido-bridged cobalt compound of (4, 4) layer shows a weak-ferromagnetic state below T C = 11.2 K. The magnetic axes were determined to be along the crystallographic a*, b, and c axes for the monoclinic space group P2 1/c. The easy axis lies along the b-axis, the canting is along the a*-axis, and the hard axis is along the c-axis. Strong anisotropy due to the oriented moments in the ordered state and/or the single-ion anisotropy of Co (2+) exists in the whole temperature range from 2 to 300 K. Below T C, very big spontaneous magnetization was observed and was attributed to the very big canting angle (15 degrees at 2 K). A possible spin configuration was then proposed to explain the experimental results. The origin of the big spin canting was discussed, and a weak-ferromagnetic approach toward molecular magnets with big spontaneous magnetization was proposed accordingly.  相似文献   

12.
张霞  张强  赵东霞 《物理化学学报》2012,28(5):1037-1044
准弹性中子散射(QENS)光谱是获取溶液分子动力学性质的重要方法,但光谱解析模型的有效性和去耦合近似的合理性仍存在争议.本文利用分子动力学模拟方法获取纯水和正丙醇水溶液中羟基氢原子的自相关中间散射函数FS(Q,t)和去耦合近似函数FP(Q,t),以及相关性质来评价它们的合理性.结果表明,在低动量转移范围内平-转去耦合近似相对合理,水分子的平-转耦合贡献较小,混合溶液中水分子的平-转耦合项和转动项随动量转移Q值增大而增大,二者显现相互抵消趋势.对于混合溶液中的正丙醇羟基氢原子,由于FS(Q,t)和质心自相关中间散射函数FCM(Q,t)偏差较大,利用实验光谱直接拟合分子平动扩散系数是不合适的.三种平动模型获取的纯水和正丙醇水溶液分子平动扩散系数与实验结果一致,略高于Einstein均方位移方法所得结果.水分子在纯水和混合溶液中表现为跳跃转动,而不是连续转动.正丙醇分子存在转动各向异性,羟基氢原子沿羟基向量为跳跃转动,沿相对质心向量可近似为连续转动.模拟结果显示,高动量转移范围平-转耦合项贡献较大,直接拟合实验光谱获取分子转动扩散系数或弛豫时间是不合适的.鉴于低动量转移范围内转动和平转耦合贡献较小,以及二者的抵消作用,在此范围内获取水分子平动信息是现实可行的.  相似文献   

13.
Powder diffraction patterns of the zeolites natrolite (Na(16)Al(16)Si(24)O(80).16H(2)O), mesolite (Na(5.33)Ca(5.33)Al(16)Si(24)O(80).21.33H(2)O), scolecite (Ca(8)Al(16)Si(24)O(80).24H(2)O), and a gallosilicate analogue of natrolite (K(16)Ga(16)Si(24)O(80).12H(2)O), all crystallizing with a natrolite framework topology, were measured as a function of pressure up to 5.0 GPa with use of a diamond-anvil cell and a 200 microm focused monochromatic synchrotron X-ray beam. Under the hydrostatic conditions mediated by an alcohol and water mixture, all these materials showed an abrupt volume expansion (ca. 2.5% in natrolite) between 0.8 and 1.5 GPa without altering the framework topology. Rietveld refinements using the data collected on natrolite show that the anomalous swelling is due to the selective sorption of water from the pressure-transmission fluid expanding the channels along the a- and b-unit cell axes. This gives rise to a "superhydrated" phase of natrolite with an approximate formula of Na(16)Al(16)Si(24)O(80).32H(2)O, which contains hydrogen-bonded helical water nanotubes along the channels. In mesolite, which at ambient pressure is composed of ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis, this anomalous swelling is accompanied by a loss of the superlattice reflections (b(mesolite) = 3b(natrolite)). This suggests a pressure-induced order-disorder transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels. The powder diffraction data of scolecite, a monoclinic analogue of natrolite where all sodium cations are substituted by calcium and water molecules, reveal a reversible pressure-induced partial amorphization under hydrostatic conditions. Unlike the 2-dimensional swelling observed in natrolite and mesolite, the volume expansion of the potassium gallosilicate natrolite is 3-dimensional and includes the lengthening of the channel axis. In addition, the expanded phase, stable at high pressure, is retained at ambient conditions after pressure is released. The unprecedented and intriguing high-pressure crystal chemistry of zeolites with the natrolite framework topology is discussed here relating the different types of volume expansion to superhydration.  相似文献   

14.
A 3D hybrid zinc formate framework, [NH(4)][Zn(HCOO)(3)], possessing an acs topology, shows a high degree of mechanical anisotropy and negative linear compressibility (NLC) along its c axis. High-pressure single-crystal X-ray diffraction studies and density functional theory calculations indicate that contraction of the Zn-O bonds and tilting of the formate ligands with increasing pressure induce changes in structure that result in shrinkage of the a and b axes and the NLC effect along c.  相似文献   

15.
The dynamics of trehalose molecules in aqueous solutions confined in silica gel have been studied by quasielastic neutron scattering (QENS). Small-angle neutron scattering measurements confirmed the absence of both sugar clustering and matrix deformation of the gels, indicating that the results obtained are representative of homogeneous trehalose solutions confined in a uniform matrix. The pore size in the gel is estimated to be 18 nm, comparable to the distances in cell membranes. For the QENS measurements, the gel was prepared from D2O in order to accentuate the scattering from the trehalose. Values for the translational diffusion constant and effective jump distance were derived from model fits to the scattering function. Comparison with QENS and NMR results in the literature for bulk trehalose shows that confinement on a length scale of 18 nm has no significant effect on the translational diffusion of trehalose molecules.  相似文献   

16.
Incoherent quasi-elastic neutron scattering (QENS) has been used to measure the dynamics of water molecules in solutions of a model protein backbone, N-acetyl-glycine-methylamide (NAGMA), as a function of concentration, for comparison with results for water dynamics in aqueous solutions of the N-acetyl-leucine-methylamide (NALMA) hydrophobic peptide at comparable concentrations. From the analysis of the elastic incoherent structure factor, we find significant fractions of elastic intensity at high and low concentrations for both solutes, which corresponds to a greater population of protons with rotational time scales outside the experimental resolution (>13 ps). The higher-concentration solutions show a component of the elastic fraction that we propose is due to water motions that are strongly coupled to the solute motions, while for low-concentration solutions an additional component is activated due to dynamic coupling between inner and outer hydration layers. An important difference between the solute types at the highest concentration studied is found from stretched exponential fits to their experimental intermediate scattering functions, showing more pronounced anomalous diffusion signatures for NALMA, including a smaller stretched exponent beta and a longer structural relaxation time tau than those found for NAGMA. The more normal water diffusion exhibited near the hydrophilic NAGMA provides experimental support for an explanation of the origin of the anomalous diffusion behavior of NALMA as arising from frustrated interactions between water molecules when a chemical interface is formed upon addition of a hydrophobic side chain, inducing spatial heterogeneity in the hydration dynamics in the two types of regions of the NALMA peptide. We place our QENS measurements on model biological solutes in the context of other spectroscopic techniques and provide both confirming as well as complementary dynamic information that attempts to give a unifying molecular view of hydration dynamics signatures near peptides and proteins.  相似文献   

17.
Systems containing 3456 water molecules in a periodic rectangular cell are studied by molecular dynamics simulation. The cell parameter along the z axis noticeably exceeds parameters along the x and y axes. Thin film with a thickness of about 30 Å is formed in a cell. Some molecules are transferred into the vapor phase; however, due to the periodicity along the z axis, they are poured into periodic images of the simulated layer above or below this layer. The width of the transition surface layer is about 6–7 Å in density upon passage from the liquid to vapor phases is generally related to the roughness of the surface rather than to a decrease in a local density. The self-diffusion coefficient of molecules in the surface layer is greatly larger than inside the film. Noticeable anisotropy in the diffusion motion of molecules in the surface layer is not revealed. As all of the cell parameters increase, the film is transformed into nearly spherical micro-droplet with a strongly roughed surface. The self-diffusion coefficient of surface molecules of microdroplet is also larger than for molecules inside the droplet.  相似文献   

18.
A two-dimensional iron(II) carboxylate coordination polymer, [Fe(pyoa)2]infinity, where pyoa is 2-(pyridin-3-yloxy)acetate, has been prepared by hydrothermal synthesis. Its crystal structure reveals a single iron(II) site with an elongated octahedral coordination environment containing four equatorial carboxylate oxygens and two axial pyridyl nitrogens; the iron(II) sites are linked by syn-anti micro-carboxylates to form chains along the b axis that have an Fe...Fe separation of 4.910 A. The shortest interchain and interlayer Fe...Fe distances are 6.453 and 11.125 A, respectively. The 4.2-295 K M?ssbauer spectra of [Fe(pyoa) 2] infinity consist of a single paramagnetic high-spin iron(II) quadrupole doublet. The axial Fe-N bond direction defines the Jahn-Teller axis at an iron(II) site and, consequently, the orientation of the single-ion magnetic anisotropy. Thus, along the b axis in a given chain, the spins are collinear and parallel to the Jahn-Teller axis. The Jahn-Teller axes of adjacent intralayer chains have different orientations with an angle of 79.2 degrees between the axes in adjacent chains in a bc layer. [Fe(pyoa)2]infinity exhibits field-induced metamagnetic behavior such that, in an applied field smaller than the critical field, the iron(II) spin-canted moments experience intrachain ferromagnetic interactions and weak interchain antiferromagnetic interactions; the spin canting yields weak ferromagnetism. In an applied field larger than the critical field, the weak antiferromagnetic interchain interactions are overwhelmed to yield superparamagnetic-like slow-magnetic relaxation with an energy barrier of 23(3) K. Single-crystal magnetic studies reveal a quasi-uniaxial magnetic anisotropy with the a axis as the easy-magnetic axis and the b axis as the hard-magnetic axis; the susceptibility measured along the easy a axis may be fit with the Glauber model to yield an effective intrachain exchange coupling constant of 2.06(8) K. A dynamic analysis of the susceptibility yields a 6.3(1) K energy barrier for intrachain domain wall creation. The observed field-assisted superparamagnet-like behavior is consistent with the dynamics of a single-chain magnet. Thus, [Fe(pyoa)2]infinity is best considered as a "metamagnetic-like" single-chain magnet.  相似文献   

19.
The reaction of manganese(III) acetate meso-tetraphenylporphyrin with phenylphosphinic acid provides the one-dimensional compound of formula [Mn(TPP)O2PHPh] x H2O, which crystallizes in the monoclinic C2/c space group. The chain structure is generated by a glide plane resulting in Jahn-Teller elongation axes of the MnIII octahedra that alternate along the chain. The phenylphosphinate anion transmits a sizable antiferromagnetic exchange interaction that, combined with the easy axis magnetic anisotropy of the MnIII sites, gives rise to a canted antiferromagnetic arrangement of the spins. The static single-crystal magnetic properties have been analyzed with a classical Monte Carlo approach, and the best fit parameters for the exchange and single ion anisotropy are J = -0.68(4) K and D = -4.7(2) K, respectively (using the -2JS(i)S(j) formalism for the exchange). Below 5 K the single-crystal dynamics susceptibility reveals a frequency-dependent out-of-phase signal typical of single-chain magnets. The extracted relaxation time follows the Arrhenius law with delta = 36.8 K. The dynamic behavior has been rationalized and correlated to geometrical parameters of the structure. The contribution of the correlation length to the energy barrier has been investigated, and it has been found that the characteristic length that dominates the dynamics strongly exceeds the correlation length estimated from magnetic susceptibility.  相似文献   

20.
We have performed molecular-dynamics simulations of CO(2) system along the gas-liquid coexistence curve and on the isochore 94.22 cm(3) mol(-1) (which corresponds to the critical isochore). The calculation has been carried out in order to analyze the diffusion of CO(2) and particularly to figure out how the diffusion coefficient may be decomposed along the molecular axes. This makes it possible to analyze the anisotropy of the diffusion along these axes and to shed light on the microscopic changes which accompany such behavior. This anisotropy is traced back to the effect of the translation-rotation coupling (TRC) along the molecular axes. Along the liquid-gas coexistence curve, the pseudolongitudinal diffusion is found to be more rapid than the transverse one. The opposite trend is found along the isochore 94.22 cm(3) mol(-1). The role of the local structure was explored by calculating intermediate scattering function and the autocorrelation functions for the forces acting along the molecular axes. It is shown that the strength of the TRC effect is correlated to the difference between the relaxation times of the local structure, that of the reorientation along the molecular axes, and that of the translational motion. The analysis of the correlation time and the average mean square force along the longitudinal and transverse directions confirms the anisotropy of the local environment that determines the translational dynamics of a molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号