首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of oxidation of Dy H3 with respect to dysprosium addition to Nd–Fe–B sintered magnets are examined.Samples sintered with the addition of freshly milled dysprosium hydride, dysprosium hydride exposed to air at room temperature for 15 min and dysprosium hydride exposed to air at 100°C for 3.5 hours are studied from the aspects of magnetic properties, microstructures, and their degradation, respectively. It is found that some oxidized dysprosium is distributed in the Nd-rich phase; hence, the decrease of remanence occurred. The degradation results indicate that preoxidised dysprosium can be a major factor in increasing the corrosion rate. The microstructures and corrosion acceleration test suggested that the oxidation is detrimental to remanence.  相似文献   

2.
The effect of Co on the thermal stability and impact toughness of sintered Nd–Fe–B magnets has been investigated. The results showed that the addition of Co decreased the intrinsic coercivity and the temperature coefficient of remanence (α), and increased the temperature coefficient of coercivity (β) for sintered Nd–Fe–B magnets. The impact toughness of sintered Nd–Fe–B magnets with the addition of Co first decreases, reaches a minimum, and then starts to increase. The possible reasons for increasing the temperature coefficients of coercivity (β) for sintered Nd–Fe–B magnets were analyzed, and the relations between the microstructure and impact toughness of sintered Nd–Fe–B magnets were studied.  相似文献   

3.
The misch-metal(MM) partially substituted Nd–Fe–B sintered magnets were fabricated by the dual alloy method,and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction(XRD)reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets.Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd–Fe–B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve(FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.  相似文献   

4.
The effect of Tb on the coercivity and impact toughness of sintered Nd–Dy–Fe–B magnets has been investigated. The results showed that the addition of Tb enhanced the intrinsic coercivity, reduced the remanence and improved the impact toughness of sintered magnets. The optimum impact toughness of sintered magnets was achieved when 1.0 at% Tb was incorporated. The possible reasons for increasing the intrinsic coercivity and improving impact toughness of sintered magnets were analyzed, and the relations between the microstructure and impact toughness of sintered magnets were studied.  相似文献   

5.
Nd content was varied in Nd_(13.2-x)Fe_(80.8+x)B_6(x = 0, 0.5, 1, and 1.5) to optimize the magnetic properties of sintered Nd–Fe–B/Tb–Fe–B composite magnets, which were prepared by mixing 9 g of Nd–Fe–B with 1 g of Tb_(17)Fe_(75)B_8 powder.In conventional magnets, by reducing Nd content, the coercivity of 10.4 kOe in Nd_(13.2)Fe_(80.8)B_6 decreases to 7.2 kOe in Nd_(12.2)Fe_(81.8)B_6; meanwhile, in Nd–Fe–B/Tb–Fe–B magnets the coercivity does not decrease when reducing Nd content.In the intergranular phase, the Tb content increases owing to the reducing Nd content of the Nd–Fe–B alloy in the sintered composite magnets.Therefore, the excess Tb in Tb_(17)Fe_(75)B_8 enters the intergranular phase, and more Tb atoms can substitute for Nd at the grain boundary of the Nd–Fe–B phase, leading to a more significant increase in coercivity.The remanence increases with reducing Nd content, and the energy product of 39.1 MGOe with a high coercivity of 21.0 kOe is obtained in Nd_(12.2)Fe_(81.8)B_6/Tb_(17)Fe_(75)B_8 magnets.These investigations show that magnetic properties can be further improved by regulating the element distribution in sintered composite magnets.  相似文献   

6.
The effect of gallium added by blending method on the magnetic properties, thermal stability and microstructure of Nd16.5Dy16.0Fe53.45Co13.0B1.05 (wt%) sintered magnets was investigated. The experimental results show that an appropriate Ga addition can markedly increase the coercivity, reduce the irreversible loss and slightly enhance the remanence. For instance, by adding 0.5 wt% Ga, the coercivity is increased from 1232 to 1819 kA/m; the irreversible loss after being exposed at 200°C for 0.5 h is reduced from above 33% to below 5%. Microstructure analyses show that the grain boundaries of the magnets with and without Ga addition are substantially different. The grain boundaries of the Ga-free magnet are meandrous. On the other hand, most of the boundaries of Ga-containing magnets are straight and smooth. These characteristics can be explained by the appearance of new phases during sintering process.  相似文献   

7.
《中国物理 B》2021,30(6):67503-067503
We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer Nd–Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd–Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd–Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd–Ga concentration after the annealing process. However, the exceeding Nd–Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6 Fe13 Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process.Therefore, the diverse changes of magnetic properties with different Nd–Ga concentrations are based on the respective evolution of grain boundary after the annealing process.  相似文献   

8.
Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resources.There are two major facts behind the efforts.First, the waste magnets contain total rare-earth content as high as more than 30 wt.%, which is higher than most natural rare-earth mines.Second, the waste magnets maintain the physical and chemical properties of the original magnets even with deterioration of the properties on surfaces due to corrosion and contamination.In this review,various techniques for recycling bulk Nd–Fe–B sintered magnet wastes, the overall properties of the recycled Nd–Fe–B sintered magnets, and the mass production of recycled magnets from the wastes are reviewed.  相似文献   

9.
The kinetics of decomposition of a polycrystalline Fe–Cu alloy and the formation of precipitates at the grain boundaries of the material have been investigated theoretically using the atomistic simulation on different time scales by (i) the Monte Carlo method implementing the diffusion redistribution of Cu atoms and (ii) the molecular dynamics method providing the atomic relaxation of the crystal lattice. It has been shown that, for a small grain size (D ~ 10 nm), the decomposition in the bulk of the grain is suppressed, whereas the copper-enriched precipitates coherently bound to the matrix are predominantly formed at the grain boundaries of the material. The size and composition of the precipitates depend significantly on the type of grain boundaries: small precipitates (1.2–1.4 nm) have the average composition of Fe–40 at % Cu and arise in the vicinity of low-angle grain boundaries, while larger precipitates that have sizes of up to 4 nm and the average composition of Fe–60 at % Cu are formed near grain boundaries of the general type and triple junctions.  相似文献   

10.
A 50 μm Al–Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 °C. The morphology and composition of the Al–Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al–Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al–Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al–Cr coating moves positively from −0.67 to −0.48 V, which is in accordance with Nyquist and Bode plots. The Al–Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets.  相似文献   

11.
MM_(14)Fe_(79.9)B_(6.1)/Nd_(13.5)Fe_(80.5)B_6 magnets were fabricated by dual alloy method(MM, misch metal). Some magnets have two Curie temperatures. Curie temperatures T_(c1)corresponds to the main phase which contains more La Ce, and T_(c1) decreases from 276.5?C to 256.6?C with the content of MM increasing from 30.3 at.% to 50.6 at.%. The variation of Br with the increase of MM indicates the existence of inter-grain exchange coupling in the magnets. When MM/R ≤ 30.3 at.%,the magnetic properties can reach the level of the intrinsic coercivity Hcj≥ 7.11 kOe and the maximum energy product(BH)max≥ 41 MGOe. Compared with Nd, La and Ce are easier to diffuse to the grain boundaries in the sintering process,and this will cause the decrease of H_(cj) Due to the diffusion between the grains, the atomic ratio of La, Ce, Pr, and Nd in each grain is different and the percentage of Nd in all grains is higher than that in misch metal.  相似文献   

12.
The effect of small additions (1 at%) of some elements (P, Cr, Ti, Zr, Pb or Sn) on the corrosion behaviour and magnetic properties of Nd15Fe77B8 sintered magnets has been investigated. It was established that most advantageous was the addition of 1 at% Cr which distinctly inhibited both acid and atmospheric corrosion processes while it did not deteriorate the magnetic characteristics of the magnet. Addition of Cr accelerates, however, the dissolution of the magnet at strongly cathodic polarization.  相似文献   

13.
14.
The role of deformation-induced defects and carbon addition on copper precipitation during ageing at 550?°C is investigated in high-purity Fe–Cu–B–N–C alloy samples by positron annihilation spectroscopy. Complementary small-angle neutron scattering (SANS) and hardness tests are utilized to characterize the size distribution of the Cu precipitates formed and their influence on the mechanical properties. Samples with 0 and 8% cold pre-strain are utilized to study the influence of prior tensile deformation on the precipitation kinetics of copper. The time evolution of the coincidence Doppler-broadening spectra indicates that deformation-induced defects enhance the Cu precipitation kinetics, which is confirmed by the SANS results. In the S–W plot, a clear reduction in open volume defects is accompanied by a strong increase of Cu signature during the initial stage of ageing, implying that the open volume defects (mainly dislocations) act as nucleation sites for Cu precipitation. A comparison between the precipitation behaviour of Fe–Cu, Fe–Cu–B–N and Fe–Cu–B–N–C indicates that the addition of carbon does not alter the Cu precipitation mechanism but decelerates the kinetics. Hardness results confirm that carbon counteracts the acceleration of Cu precipitation caused by the addition of B and N.  相似文献   

15.
We investigate the effect of the optimized aging processing on magnetism and mechanical property of the sintered Dydoped Nd–Fe–B permanent magnet. The experimental results show that the magnetism, especially intrinsic coercivity, of the optimized aged Dy-doped Nd–Fe–B magnet is more excellent than that of the sintered one, but the former's strength and hardness are lower than that of the latter. It was observed that the optimized aged Dy-doped Nd–Fe–B magnet have more uniform grain size, thinner(Nd, Dy)-rich boundary phase. By means of the EBSD technology, the number of larger angle grain boundaries in the optimized aged Dy-doped Nd–Fe–B magnet is more than that of the sintered one. The reasons for the increased intrinsic coercivity and decreased mechanical properties of the optimized aged Dy-doped Nd–Fe–B magnet are also discussed.  相似文献   

16.
We have shown by X-ray analysis and magnetic measurements, that the easy growth axis of Nd2Fe14B crystals corresponds to the “a” axis of the tetragonal structure while the easy magnetization axis is the “c” axis at temperatures above 135K. This correlation allows to understand some interesting features in NdFeB magnets:
  • •-anisotropic contraction during sintering in magnets obtained by classical powder metallurgy,
  • •-orientation mechanism during hot pressing (“die upset”) of magnets based on melt spun ribons.
  相似文献   

17.
The microstructure and the solidification kinetics of stoichiometric Nd–Fe–B alloy with Ti and C additions were investigated using the electromagnetic levitation technique. In situ temperature–time characteristics were carried out. A strong reduction of the growth velocity of the Nd2Fe14B phase was observed in the Nd–Fe–B–Ti–C alloy compared to the addition-less Nd–Fe–B alloy. The undercoolability of the melt depends on the alloy composition. Moreover, at high TiC contents, the maximum undercooling level is strongly reduced turning to low cooling rates. The TiC solution and its formation were studied in overheated and undercooled samples, respectively after subsequent quenching. The cooling rate prior to solidification influences drastically the morphology of the TiC precipitates which affects strongly the nucleation of the properitectic γ-Fe phase in the undercooled stage.  相似文献   

18.
3D finite element-based software (3D DEFORM) was used to simulate the thermal extrusion process of nanocrystalline magnetic ring. The effective stresses and effective strains for a ring magnet at different stages of the extrusion process were determined by simulation. The effective strains at different stages are displayed. The effective stresses on the cross section are determined by simulation. The test results of magnetic properties were of good validation of the three-dimensional finite element analysis for nanocrystalline backward extruded ring. 3D finite element-based plastic deformation simulation is proved to be an effective way to analyze the hot extrusion process of nanocrystalline magnetic ring, and to provide guiding for the mold design of thermal extrusion.  相似文献   

19.
Microstructures and magnetic domain structures of overquenched Nd–Fe–B permanent magnets have been investigated in detail by transmission electron microscopy. While magnetic domain boundaries are clarified by Lorentz microscopy, magnetization distribution in the domains is clearly observed by electron holography. In the as-quenched magnet, the size of the magnetic domains is in the range from 200 to 500 nm and the direction of the magnetic lines of force changes gradually in wide region, while in the annealed one having the crystalline phase of Nd2Fe14B, the direction of the magnetic lines of force changes drastically especially at the grain boundaries. Furthermore, the direction of the magnetic lines of force changes more drastically in the specimen annealed at 893 K than the specimen annealed at 843 K. This result clearly indicates that the magnetocrystalline anisotropy is enhanced with the increase of annealing temperature, resulting in strong domain wall pinning.  相似文献   

20.
Contrary to previous simulation results on the existence of amorphous intergranular films at high-angle twist grain boundaries (GBs) in elemental solids such as silicon, recent experimental results imply structural order in some high-angle boundaries. With a novel protocol for simulating twist GBs, which allows the number of atoms at the boundary to vary, we have found new low-energy ordered structures. We give a detailed exposition of the results for the simplest boundary. The validity of our results is confirmed by first-principles calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号