首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical study of Bloch electron transport in a superlattice miniband driven by an electric field parallel to the growth axis is carried out, by Fokker-Planck equation (FPE) in momentum space with the averaged momentum relaxation time (γ) approximation. Steadystate drift-velocity/field characteristics exhibit the expected maximum followed by negative differential conductivity (NDC), and then followed by drift-velocity oscillation when γ or electric field is large. The oscillation frequency is an increasing function of γ, and when γ → ∞, the limit of the oscillation frequency is the Bloch frequency as expected.  相似文献   

2.
LI Min  MI Xian-Wu 《理论物理通讯》2009,52(6):1134-1138
Using an excitonic basis, we investigate the intraband polarization, opticalabsorption spectra, and terahertz emission of semiconductor superlattice withthe density matrix theory. The excitonic Bloch oscillation is driven by the dcand ac electric fields. The slow variation in the intraband polarizationdepends on the ac electric field frequency. The intraband polarizationincreases when the ac electric field frequency is below the Bloch frequency.When the ac electric field frequency is above the Bloch frequency, theintraband polarization downwards and its intensity decreases. The satellitestructures in the optical absorption spectra are presented. Due to excitonicdynamic localization, the emission lines of terahertz shift in different acelectric field and dc electric field.  相似文献   

3.
We have directly determined the spectral shape of the complex conductivities of Bloch oscillating electrons by using the time-domain terahertz (THz) electro-optic sampling technique, and presented experimental evidence for a dispersive Bloch gain in superlattices. This unique dispersive gain without population inversion arises from a nonclassical nature of Bloch oscillations; that is, the phase of the Bloch oscillation is shifted by pi/2 from that of the semiclassical charged harmonic oscillation when driven by the same ac field. By increasing the bias electric field, the gain bandwidth reached approximately 3 THz in our particular sample.  相似文献   

4.
The oscillatory motion of electrons in a periodic potential under a constant applied electric field, known as Bloch oscillations (BO), is one of the most striking and intriguing quantum effects and was predicted more than eighty years ago. Oscillating electrons emit electromagnetic radiation and here we consider this BO effect for emission in the THz region. To date, it has been assumed that the Bloch oscillation of an electron is anharmonic oscillation, therefore with radiation emitted at the single Bloch frequency. We analyze scenarios when Bloch oscillations can be accompanied by the emission of radiation not only at the Bloch frequency but also with double and triple Bloch frequencies. The first scenario means that electrons could jump over neighboring Stark states. The second scenario of anharmonic emission is coupled to an opening of the minigap in the miniband.  相似文献   

5.
《Physics letters. A》2020,384(25):126596
We present a new scheme for realizing Bloch oscillations and Wannier-Stark ladder based on a lattice of coupled LC circuits. By converting the second order dynamical ODEs of the system into a first order Schrödinger-like equation, we propose an equivalent tight binding Hamiltonian to describe the circuit. We show that a synthesized electric field is produced by introducing a frequency mismatch into the resonant frequency of the adjacent LC resonators. The Wannier-Stark modes are the normal modes of the circuit and the Bloch oscillations can be observed in a coupled LC lattice. By addition of coupling capacitors between nodes of the circuit, we study the Bloch oscillation in the presence of long-range couplings. We also show that the circuit converts to a transmission line simulating synthetic electric fields in the continuum limit. The coupled LC circuit is, in some sense, amongst the simplest physical systems exhibiting Bloch oscillation and Wannier-Stark Ladder.  相似文献   

6.
田强 《大学物理》1996,15(1):27-28,30
用能带理论分析一维超晶格电子在直流外场作用下的阻尼运动,对Bloch振荡和负微分电导现象给出清楚的物理图象,并通过数值解得到有阻尼时振荡频率随外场增加而趋近于Bloch频率的一般规律。  相似文献   

7.
研究了方波电场驱动下的双Bloch带的紧束缚模型.借助Fourier分析,得到了在弱耦合极限下Rabi振荡及Rabi频率的解析解;这些结果均由电子的数值演化所证实.  相似文献   

8.
We have directly determined the spectral shape of the complex conductivities of Bloch oscillating electrons by using time-domain terahertz (THz)-electrooptic sampling technique and presented an experimental evidence for a dispersive Bloch gain in superlattices. This unique dispersive gain without population inversion arises from a non-classical nature of Bloch oscillations; i.e., the phase of the Bloch oscillation is shifted by π/2 from that of the semi-classical charged harmonic oscillation when driven by the same AC field. By increasing the bias electric field, the gain bandwidth reached in our particular sample.  相似文献   

9.
The dynamic conductivity of graphene superlattice in the presence of ac electric field and dc electric field with longitudinal and transversal components with respect to superlattice axis was calculated. In the case of strong transversal component of dc field conductivity of graphene superlattice was shown to be such as if the electrons had got the effective mass. In the case of weak transversal component of dc field conductivity was shown to change its sign if the frequency of ac field was an integer multiple of half of Bloch frequency.  相似文献   

10.
The intrinsic helix conformation of the DNA strands is known to be the key ingredient of control of the electric current through the molecule by the perpendicular (gate) electric field. We show theoretically that Bloch oscillations in periodic systems with helical conformation are also strongly affected by such lateral field; the oscillation frequency splits into a manifold of several generally non-commensurate frequencies leading to a complicated pattern of the charge motion. For model parameters typical for the DNA the frequency of such oscillations falls in the THz domain, suggesting a possibility to design a DNA-based nano-scale source of THz radiation.  相似文献   

11.
We studied the optical Bloch oscillation and resonant Zener tunneling in macroscopic quasi-period structures of alternatively stratified single negative and dielectric slabs. By a decrease in the thicknesses of the dielectric slabs, the electronic potential of crystals subjected to external dc electric fields is mimicked and the optical Wannier-Stark ladder (WSL) is realized. Both scattering states and the time-resolved transmission of a short pulse are provided to show the existence of the optical analogue of electronic Bloch oscillation. At a critical gradient, the resonant photon Zener tunneling is demonstrated both from the amplitude and the time delay in the transmitted signal of a short pulse.  相似文献   

12.
《Physics letters. A》1998,246(5):446-450
The quantum theory for mesoscopic electric circuits with charge discreteness is briefly described. The Schrödinger equation of the mesoscopic electric circuit with an external source which is the time function has been proposed. The Bloch wave oscillation and Coulomb blockade in the mesoscopic electric circuit have been addressed.  相似文献   

13.
A charge motion in an electric field in a Holstein molecular chain is modeled in the absence of dissipation. It is shown that in a weak electric field a Holstein polaron moves uniformly experiencing small oscillations of its shape. These oscillations are associated with the chain’s discreteness and caused by the presence of Peierls-Nabarro potential there. The critical value of the electric field intensity at which the moving polaron starts oscillating at Bloch frequency is found. It is shown that the polaron can demonstrate Bloch oscillations retaining its shape. It is also shown that a breathing mode of Bloch oscillations can arise. In all cases the polaron motion along the chain is infinite.  相似文献   

14.
We study the in-plane stationary photocurrent in a parabolic potential well. The well has vertical asymmetry due to inhomogeneous distribution of scatterers. The electric field of light has both vertical and in-plane components. The photogalvanic effect originates from the periodic oscillation of electrons in a vertical direction caused by the normal component of the alternating electric field with simultaneous in-plane acceleration/deceleration by the in-plane component of electric field. The problem is considered in classical approximation assuming inhomogeneously-distributed friction. Photocurrent has a resonance character. Resonance occurs at light frequencies close to a characteristic well frequency. The effect of in-plane magnetic field is also studied.  相似文献   

15.
The operation of a three-mode laser with a homogeneous broad bandwidth is modeled as three different harmonic oscillators coupled to each other by the usual Maxwell–Bloch equations. The main aim is to extend and compare the laser variables when it moves from a single to a three-mode state. A multi-component model for the cavity electric field and the atomic population inversion is introduced to describe the simultaneous oscillation of the laser central and adjacent modes. The phase relations and the frequency shifts of these components in mode-locking conditions are determined. We also investigate the effect of the laser pumping rate and the mode frequency separation on the amplification of modes. Finally, the amplification gains of all three modes are calculated and their agreement with the energy conservation law is demonstrated.  相似文献   

16.
The mechanisms of the occurrence of self-induced and selective transparencies of semiconductor superlattices in a strong time-dependent electric field are investigated. The association of these mechanisms with Bloch oscillations, dynamical localization, and collapse of electron quasi-energy minibands is analyzed, and a comparison with the properties of Josephson junctions is made. It is shown that the self-induced transparency is due to the fact that the current-contributing component of the electron distribution function is destroyed by collisions at discrete values of the amplitude of the time-harmonic field, while the selective transparency is associated with the nonmonotonic dependence of the spectrum of nonlinear electron oscillations in the electric field on the amplitude of the field. The dynamical localization and collapse of quasi-energy minibands lead to the field energy dissipation and are favorable to destruction of the transparency states of the superlattice.  相似文献   

17.
Bloch oscillation in electrically biased semiconductor superlattices offer broadband terahertz gain from DC up to the Bloch frequency or Stark splitting. Useful gain up to 2–3 THz can provide a basis for solid-state electronic oscillators operating at 10 times the frequency of existing devices.A major stumbling block is the inherent instability of the electrically biased doped superlattices to the formation of static or dynamic electric field domains. To circumvent this, we have fabricated super-superlattices in which a large superlattice is punctuated with heavily doped regions. The short superlattice sections have subcritical “nL” products.Room temperature, terahertz photon-assisted transport in short InGaAs/InAlAs superlattice cells allows us to determine the Stark ladder splitting as the superlattice is electrically biased and confirms the absence of electric field domains in short structures.Absorption of radiation from 1.5 to 2.5 THz by electrically biased InAs/AlSb super-superlattices exhibit a crossover from loss to gain as the Stark ladder is opened. Measurements are carried out at room temperature in a novel planar terahertz waveguide defined by photonic band gap sidewalls and loaded with an array of electrically biased super-superlattices. The frequency-dependent crossover voltage indicates 80% participation of the super-superlattice.  相似文献   

18.
We present a finite difference method to solve a new type of nonlocal hydrodynamic equations that arise in the theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices. The hydrodynamic equations describe the evolution of the electron density, electric field and the complex amplitude of the Bloch oscillations for the electron current density and the mean energy density. These equations contain averages over the Bloch phase which are integrals of the unknown electric field and are derived by singular perturbation methods. Among the solutions of the hydrodynamic equations, at a 70 K lattice temperature, there are spatially inhomogeneous Bloch oscillations coexisting with moving electric field domains and Gunn-type oscillations of the current. At higher temperature (300 K) only Bloch oscillations remain. These novel solutions are found for restitution coefficients in a narrow interval below their critical values and disappear for larger values. We use an efficient numerical method based on an implicit second-order finite difference scheme for both the electric field equation (of drift-diffusion type) and the parabolic equation for the complex amplitude. Double integrals appearing in the nonlocal hydrodynamic equations are calculated by means of expansions in modified Bessel functions. We use numerical simulations to ascertain the convergence of the method. If the complex amplitude equation is solved using a first order scheme for restitution coefficients near their critical values, a spurious convection arises that annihilates the complex amplitude in the part of the superlattice that is closer to the cathode. This numerical artifact disappears if the space step is appropriately reduced or we use the second-order numerical scheme.  相似文献   

19.
Recently, polarons in the Peyrard-Bishop-Holstein model under DC electric fields were established to perform Bloch oscillations, provided the charge-lattice coupling is not large. In this work, we study this model when the charge is subjected to an applied field with both DC and AC components. Similarly to what happens in the rigid lattice, we find that the carrier undergoes a directed motion or coherent oscillations when the AC field is resonant or detuned with respect to the Bloch frequency, respectively. The electric density current and its Fourier spectrum are also studied to reveal the frequencies involved in the polaron dynamics.  相似文献   

20.
We investigate the energy spectrum and the electron dynamics of a band in a semiconductor superlattice as a function of the electric field. Linear optical spectroscopy shows that, for high fields, the well-known localization of the Bloch states is followed by a field-induced delocalization, associated with Zener breakdown. Using time-resolved measurements, we observe Bloch oscillations in a regime where they are damped by Zener breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号