首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements have been made of the transit times of pulses of longitudinal and transverse ultrasonic waves propagating in single crystal LaB6 at room temperature. A unique set of values for the three independent elastic constants has been calculated from the resultant velocities and is; C11 = (45.33 ± 0.11) × 1011dynecm-2, C12 = (1.82 ± 0.17) × 1011dynecm2 and C44 = (9.01 ± 0.05) × 1011dyne/cm2. The Debye temperature of LaB6 from these measurements is 773 K, which agrees relatively well with the X-ray Debye temperature, however, differs much from the calorimetric and electrical resistance Debye temperatures.  相似文献   

2.
Measurements have been carried out of the elastic constants of SrO in the virgin undoped state and of the changes produced in them by equilibrium doping with oxygen at ? 1200°C and oxygen partial pressure of 0.95 atm. The method used was Papadakis' pulse-echo overlap technique in conjunction with thermogravimetric analysis (T.G.A.) to determine mass and density changes due to oxygen doping.The values obtained for C11, C12 and C44 of the virgin crystal at 23°C are
C11 = 17.60 ± 0.03 × 1011 dynes/cm2
;
C12 = 4.808 ± 0.007 × 1011 dynes/cm2
;
C44 = 5.577 ± 0.008 × 1011 dynes/cm2
.(These values are in very good agreement with those of Son and Bartels [2].)Values for δC11C11 and δC44C44 were found to be ?1.74% and ?0.86% respectively. Accurate valu δC12C12 could not be obtained because of sample size limitations after quenching. However, C12 was shown to definitely increase due to doping.Analysis of the results indicate that the elastic modulus changes can only be attributed to the formation of cation vacancies during doping. Analysis of the T.G.A. behavior indicates that this cation vacancy formation is probably associated with the presence of various tripositive cation and uninegative anion species depending upon the impurity concentrations of the sample. This implied impurity-controlled cation vacancy concentration is consistent with the earlier observed extrinsic nature of cation diffusion in SrO at 1200°C.  相似文献   

3.
The isothermal compressibilities of pristine graphite and stages 1 and 2 potassium-graphite have been measured at room temperature. Diamond anvil X-ray diffraction techniques were employed to determine the c-axis lattice constant as a function of hydrostatic pressure up to 12 kbar. The compressibilities kc ? 1C33 were found to be (2.73±0.09)×10-12, (2.13±0.09)×10-12, (5.3±0.8)×10-12 and (1.6±0.2)×10-12cm2dyn for graphite, KC8, stage 2 KC24 and stage 3 KC24, respectively. The compressibility of KC8 was comparable to that of RbC8 deduced from neutron scattering experiments.  相似文献   

4.
The rotational structure of about 40 bands of 12C2HD observed in the region 6000?600 cm?1 has been measured and interpreted with the purpose of determining a comprehensive set of molecular constants for this isotopic variety of acetylene. Combining these data with the results for 12C2H2 and 12C2D2, a reevaluation of the equilibrium internuclear distances for the acetylene molecule has been made: re(CH) = 1.06215 ± 17 × 10?5A? and re(CC) = 1.20257 ± 9 × 10?5A? were obtained. This paper presents all the molecular constants derived in this study.  相似文献   

5.
The disagreement of Danyluk and King's (Chem. Phys.25, 343 (1977)) rotational constants for levels lying near the dissociation limit of B-state I2 with the mechanical behavior predicted by near-dissociation theory is investigated. The discrepancies are shown to be much too large to be explained by either the neglect of centrifugal distortion effects in the original analysis or by rotational or spin-rotation coupling to a nearby repulsive 1u state. These differences are therefore attributed to experimental error, a conclusion which is confirmed by more recent experimental results. A reanalysis of the best available data for levels near the dissociation limit of B-state I2 then yields improved values for the B-state dissociation limit D = 20 043.16 (±0.02) cm?1 of the vibrational index at dissociation vD = 87.32 (±0.04) and of the long-range potential constant C5 = 2.88 (±0.03) × 105cm?1A?5. This in turn implies a slightly improved ground-state dissociation energy of D0 = 12 440.18 (±0.02) cm?1.  相似文献   

6.
Pulsed field experiments up to 450 kOe have been performed on FeSiF6.6H2O. We interpret the data: (i) in terms of spin hamiltonian constants: D = 12.3± 0.2 cm-1 (E = 0.54cm-1 being known from EPR data); (ii) in terms of axial-crystal-field parameters: δλ = orbital trigonal splitting/spin-orbit coupling = 15 ± 2; λ = -100 ± 7cm?1. The magnetic axis is found to deviate from the cristallographie c axis by an angle 1° < θ < 2°. The adiabatic cooling obtained during the pulse is discussed.Similar experiments on Fe0.15Zn0.85SiF6.6H2O and Fe0.30Zn0.70SiF6.6H2O single crystals are reported; in both cases we measure Dg = 6.0 ± 0.1cm-1. Using EPR data, we obtain D = 14.3cm-1, λ ~ ?75cm-1, δ ~ 195cm-1; using Mössbauer data, we obtain D = 15.3cm-1, λ ~ ?88cm-1, δ ~ 185cm-1.  相似文献   

7.
EPR of 61Ni+ doped CuGaS2 at 4.2 K leads to the following experimental data: g = 1.918 ± 0.006 A  < 12 × 10-4cm-1, g = 2.328±0.006 A = (65±2) × 10-4cm-1. High axial field splitting of 2T2 state stabilizes the center against Jahn-Teller interaction. Covalency reduction factor k is 0.76.  相似文献   

8.
The shape and moments of the F+ absorption band in SrO have been measured between 4.2K and 300K. Analysis of the moments gives the effective frequency of the vibrational modes interacting with the centre as h?ω = 236 ± 20 cm-1, and the Huang-Rhys factors for cubic and non-cubic modes as SC = 3 ± 1 and SNC = 4 ± 1 respectively.  相似文献   

9.
We have measured 16O17O elastic cross sections at 22 MeV between 65°–140° to ± 1 %. The observed oscillatory interference between Coulomb scattering and the neutron transfer process is analyzed using exact finite-range DWBA. A model-independent value of C?2 = 0.82 ± 0.07 is obtained for the coupling constant of the 1d52 neutron in 17O. We also present an analysis of data on magnetic electron scattering from 17O, which yields precise information on the magnitude and the radial shape of the 1d52 neutron bound-state wave function. With this we relate the coupling constant to the spectroscopic factor and find S = 1.04 ± 0.11. We show that the magnetic electron scattering data alone yield S = 1.04 ± 0.10. Combining these results with earlier work we recommend C?2 = 0.79 ± 0.04 and S = 1.03 ± 0.07 as best values. This spectroscopic strength corresponds to (91 ± 7) % of the full single-particle value.  相似文献   

10.
The Raman active fundamentals ν1(A1g), ν2(Eg), ν5(F2g), and the overtone 2ν6 of SF6 have been investigated with a higher resolution and the band origins were estimated to be: ν1 = 774.53 cm?1, ν2 = 643.35 cm?1, ν5 = 523.5 cm?1, and 2ν6 = 693.8 cm?1. Raman and infrared data have been combined for estimation of several anharmonicity constants. The ν6 fundamental frequency is calculated as 347.0 cm?1. From the analysis of the ν2 Raman band, the following rotational constants of both the ground and upper states have been calculated:
B0 = 0.09111 ± 0.00005cm?1; D0 = (0.16±0.08)10?7cm?1
;
B2 = 0.09116 ± 0.00005cm?1; D2 = (0.18±0.04)10?7cm?1
.  相似文献   

11.
A forward dispersion relation cannot be applied to charged particle scattering amplitudes unless the influence of the Coulomb interaction is explicitly considered. Earlier studies have shown how Coulomb effects can be taken into account when direct (s-channel or bound-state) poles are investigated. In this paper we extend the Coulomb modification to include I = 0 exchange (u-channel) processes as well. We then apply a forward dispersion relation to empirical d + α, p + d and n + d elastic scattering amplitudes which contain both direct and exchange poles with and without Coulomb effects. We obtain detailed and model-independent information on the following vertices: 6Li-α-d (S- and D-state) 4He-d-d, 3He-d-p, 3H-d-n and d-p-n. From the coupling constants we calculate the asymptotic normalization (spectroscopic factors) C21 of the corresponding cluster wave functions, which become: C20(6Li, αd) = 4.62 ± 0.23, C22(6Li, αd) = (1 ± 6) × 10?4, C20(α, dd) < 2, C20(3He, dp) = 3.5 ± 0.4, C20(3H, dn) = 2.6 ± 0.3 and C20(d, np) = 1.66 ± 0.1.  相似文献   

12.
High resolution spectra of the ν3 band of methane, 12CH4, were recorded by using a “third generation vacuum Fourier interferometer”; a large pressure range (from 0.009 to 10 Torr) with a sample path fixed at eight meters was used, enabling observation of transitions with intensity ratios as low as 110 000. More than 350 forbidden transitions of the ν3 band, including about 125 transitions of the Q+ branch, were unambiguously identified. Of the 277 transitions retained for computations, one-hundred have 11 ≤ J ≤ 16. From combination difference relations using pairs of transitions having the same upper state energy level (forbidden-allowed and forbidden-forbidden pairs were used), 276 independent differences between ground state energy levels could be determined with uncertainties of about 0.001 cm?1.These data yielded the following values for the ground state structure constants of 12CH4 along with their standard deviations (in cm?1): βohc=5.2410356±0.0000096, γohc=(?1±0.00074) 10?4, πohc=(5.78±0.18) 10?9, ?ohc=(?1.4485±0.0023) 10?6, ?ohc=(1.768±0.126) 10?10, ξohc=(?1.602±0.067) 10?11, Thus, for the first time, the scalar constant π0 has been evaluated and ir values have been obtained for the two tetrahedral constants ?0 and ξ0; furthermore, these values are in very good agreement with the ones recently determined from radiofrequency data, i.e., in cm?1: ?ohc=(?1.45061±0.00014) 10?6, ?ohc=(1.7634±0.0068) 10?10, ξohc=(?1.5432±0.0040) 10?11 From these values, the 276 differences can be reproduced with an overall rms deviation equal to 0.0009 cm?1.Finally, the ground state energies of 12CH4 have been calculated for J ≤ 16.  相似文献   

13.
The diffusion of water into additively colored potassium iodide has been studied in the range 15–45°C. Penetration depths, measured by decrease in the F-band absorption, increase with t12. The diffusion coefficient, D = 0·58 exp (?6496/T) cm2 sec?1 agrees very well with that determined by other workers. The Henry's law constant, K = C0pw = 1·3 × 109exp (+4882/T) cm?3 torr?1 implies a water concentration of C0 ? 1017 molecules per cm3 in the surface of KI crystals in equilibrium with an environment at 25°C and 35 per cent relative humidity. The large C0 makes penetration very rapid. Diffusion occurs by interstitial migration of water molecules with an entropy of activation of 9.4 cal/mol deg and an enthalpy of activation of 12·9 kcal/mol.  相似文献   

14.
The gas phase infrared spectra of monoisotopic H3Si35Cl and H3Si37Cl have been studied in the ν1ν4 region near 2200 cm?1 with a resolution of 0.012 and 0.04 cm?1, respectively, and rotational fine structure for ΔJ = ±1 branches has been resolved. In addition, some information on ν3 + ν4 of H3Si35Cl near 2750 cm?1 has been obtained. ν1 and ν4 are weakly coupled by Coriolis x, y resonance, BΩ14ζ14 ~ 2 × 10?3cm?1, only the upper states K′ = 2, l = 0 and K′ = 1, l = ?1 being substantially affected. Local perturbation due to rotational l(±1, ±1)-type resonance with ν3 + ν5+1 + ν6+1 and ν3 + ν5+1 + ν6?1 is revealed in the ΔK = +1 and ?1 branches, respectively. From a fit of the experimental line positions, standard deviations of 1.4 and 3.8 × 10?3 cm?1, respectively, to a model with five interacting levels conventional excited state parameters and interaction constants have been obtained. In H3Si35ClH3Si37Cl the fundamentals are ν1, 2201.94380(15)2201.9345(7) and ν4, 2209.63862(8)2209.6254(2) cm?1, respectively. Q branches of the “hot” band (ν3 + ν4) ? ν3 and of ν4 of the 29Si and 30Si species have been detected.  相似文献   

15.
Medium resolution infrared grating spectra of gaseous ketene, H2CCO were recorded between 1000 and 400 cm?1, both at instrument temperature (40°C) and with cooling (?40°C). Interferometric Fourier spectra were also measured at ?70°C with resolution 0.22 cm?1 between 450 and 330 cm?1. The K structure of the fundamentals ν5, ν6, ν8, and ν9 was assigned. These fundamentals are coupled by a-axis Coriolis interactions. These couplings were analysed on the symmetric top basis for setting up the perturbation matrix and by utilizing the K-dependent Coriolis shifts of levels. A preliminary analysis of the Coriolis intensity anomalies was also undertaken.Band center values from combination differences are ν50 = 587.30 (27) and ν60 = 528.36 (39) cm?1. Synthetic spectra indicate the band origins of ν8 and ν9 to be close to 977.8 and 439.0 cm?1, respectively. Estimates of Coriolis coupling constants obtained from synthetic spectra are ζ58a = + 0.33 (5), ζ68a = + 0.714 (20), ζ59a = ? 0.774 (20), and ζ69a = ? 0.30 (2). Approximate ratios of unperturbed vibrational transition moments obtained from spectral simulations are M80:±iM50:±iM60:M90 ≈ +2:?9:+10:+0.5.  相似文献   

16.
The third order elastic constants of RbCl, determined by measurements of the static stress dependence of ultrasonic waves, are found to be (in units of 1012dynescm2)
C111 = ?6.71 ± 0.1 C123 = 0.05 ± 0.07
C112 =?0.18 ± 0.04 C144 = 0.11 ± 0.02
C166 =?0.17 ± 0.01 C456 = 0.4 ± 0.01
. The calculation of third order constants using a rigid ion Born model is briefly discussed, and results are compared to the measurements. The comparison qualitatively supports the model, but no quantitative evaluation of the repulsive interaction is possible.  相似文献   

17.
Excitation functions of the capture reaction 12C(p, γ0)13N have been obtained at θγ = 0° and 90° and Ep = 150–2500 keV. The results can be explained if a direct radiative capture process, E1(s and d → p), to the ground state in 13N is included in the analysis in addition to the two well-known resonances in this beam energy range [Ep = 457(12+) and 1699 (32?) keV]. The direct capture component is enhanced through interference effects with the two resonance amplitudes. From the observed direct capture cross section, a spectroscopic factor of C2S(l = 1) = 0.49 ± 0.15 has been deduced for the 12? ground state in 13N. Excitation functions for the reaction 12C(p,γ1p1)12C have been obtained at θγ = 0° and 90° and Ep = 610–2700 keV. Away from the 1699 keV resonance the capture γ-ray yield is dominated by the direct capture process E1 (p → s) to the 2366 (12+) keV unbound state. Above Ep = 1 MeV, the observed excitation functions are well reproduced by the direct capture theory to unbound states (bremsstrahlung theory). Below Ep = 1 MeV, i.e., Ep → 457 keV, the theory diverges in contrast to observation. This discrepancy is well known in bremsstrahlung theory as the “infrared problem”. From the observed direct capture cross sections at Ep ? 1 MeV, a spectroscopic factor of C2S(l = 0) = 1.02 ± 0.15 has been found for the 2366 (12+) keV unbound state. A search for direct capture transitions to the 3512 (32?)and 3547 (52+) keV unbound states resulted in upper limits of C2S(l = 1) ≦ 0.5 and C2S(l = 2) ? 1.0, respectively. The results are compared with available stripping data as well as shell-model calculations. The astrophysical aspect of the 12C(p, γ0)13N reaction also is discussed.  相似文献   

18.
The vibration-rotation transitions for v = 1 ← 0 of NO (2Π12) have been studied by using the technique of laser magnetic resonance spectroscopy. Five magnetic resonance lines are observed with three CO laser lines in the range from 1859 to 1886 cm?1. From these, three zero-field transition frequencies, v = 1 ← 0; R(32), P(72), and P(92) are obtained with an accuracy of ±0.0007 cm?1. The molecular constants which have been determined by borrowing centrifugal constants from a previous infrared work are B021 = 1.72004 ± 0.00006 cm?1, B121 = 1.70212 ± 0.00010 cm?1, and G(v = 1) ? G(v = 0) (for 2Π12) = 1875.8470 ± 0.0007 cm?1.  相似文献   

19.
Using a recent theoretical method, the ratio of nuclear matrix elements R = (vF0220?√32AF0221/vF0211) was determined to be either 20.50+0.35?0.55 or 25.22+0.28?0.17 in the second-forbidden nonunique decay of 8 × 104 y 59Ni. These values of R were obtained from a value of L3/K = 0.008 ± 0.002 found by subtracting the theoretical ratio (L1 + L2)K = 0.113 (based on QPEC = 1070 ± 8 keV) from the total ratio L/K = 0.121 ± 0.002, which was measured with a reactor-produced, doubly-mass-separated 59Ni source introduced as gaseous nickel-ocene, (C5H5)2, into a wall-less, anticoincidence, multiwire proportional counter. The 854–1008 eV L and the 8.33 keV K peaks were measured simultaneously.  相似文献   

20.
We have measured the room-temperature static lattice dielectric constant of PbTe using a cavity-perturbation technique. The result, ?s = 800 ± 220, implies a transverse optic phonon frequency ωTO = 23 ± 43 cm-1 in agreement with values extrapolated from low-temperature magnetoplasma measurements but in disagreement with the commonly-quoted neutron-diffraction result of Cochran et al., ωTO = 31.7 ± 1.3 cm-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号