首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internally consistent assignments of the 31P-{1H} NMR parameters of the complexes [Pt(RCCR′)(PPh3)2] are proposed, based on the premise that the magnitude of 1J(PtP) depends mainly on the nature of the moiety CR trans to P. For a given R, 2J(PP) correlates with 1J(PtP) for thebond trans to CR. The alkynes PhCCSnEt3, PhCCSnPh3, Me3SiCCCl, Me3SiCCBr, Et3SiCCI and MeCCI undergo oxidative addition reactions with [Pt(C2H4)(PPh3)2]; the intermediate alkyne complex was detected for PhCCSnEt3, Me3SiCCCl and Me3CCBr. The triyne Me(CC)3Me forms platinum(0) complexes by coordination with the central or terminal CC bond and appears also to give a platinum(II) complex by oxidative addition.  相似文献   

2.
Proton NMR data at 100 MHz are reported for thirteen para- and meta-substituted phenyltrimethyltin compounds, XC6H4Sn(CH3)3, where X = para-N(CH3)2, para-OCH3, para-OC2H5, para-CH3, meta-CH3, -H, para-F, meta-OCH3, para-Cl, para-Br, meta-F, meta-Cl and para-Sn(CH3)3. Correlation coefficients with Hammett σ-constants of greater than 0.95 are obtained with the methyltin proton chemical shifts and coupling constants to carbon [1J(13C1H)] and tin [2J(SnC1H)]. Solvent effects and other extraneous factors invalidate comparisons of ? values in terms of the relative attenuation of the transmission of substituent effects through homologous carbon, silicon, germanium and tin systems, but coupling constant data reflect a diminution of ca. one tenthfold per bond in the order ?[C(1)Sn] > ? [SnC] > ? [CH]. Satisfactory correlations (r > 0.95) are obtained in this series of closely-related compounds among the conventionally recorded two-bond, 2J(SnC1H) and the constituent, one-bond 1J (Sn13C) and J(13C1H) coupling constants, but the correlation coefficient for the comparison between the two one-bond couplings, 1J(Sn13C) and 1J(13C1H) is lower (r = 0.872). Changes in the couplings at the methyltin carbon bond tin-119 atoms are interpreted in terms of isovalent hybridization; a model based upon effective nuclear charges is tested with respect to both NMR coupling constants and 119Sn Mössbauer Isomer shifts at tin and is invalidated. Proton and carbon-13 NMR, chemical shift and coupling constant data are used to derive a Hammett σ-constant for the para-trimethyltin group of ?0.14, and the significance of this value is discussed.  相似文献   

3.
Tin-119 and carbon-13 NMR data for a total of 34 compounds containing the grouping Sn-C-Sn (C is either sp3- or sp2-hybridised) are presented and discussed. In organotin derivatives of alkanes, 2J(Sn-C-Sn) can only be correlated with 1J(Sn-C2) if a sign change for the former coupling is assumed. In most of the compounds of this type studied, 1J(Sn-CH3) is, due to rehybridisation and in contrast to the usual situation, larger than 1J(Sn-C2); the same is true in some cases for distannylakenes, the behaviour of which is complicated by changes in the torsional angle about the carbon-carbon double bond. Thus correlation of 2J(Sn-C-Sn) with other spectral parameters is not possible in these cases. The total tin chemical shift range for compounds MenSn(CH2MME3)4-n (M  C, Si, Ge, Sn; n  0–4) is 140 ppm. Incorporation of a ditin fragment in a six-membered ring causes a downfield tin shift of 30 ppm.  相似文献   

4.
Cationic alkoxycarbene complexes of platinum(II) have been isolated in the reactions of trans-[(PR3)2PtX(R′OH)]PF6 (X  H or Me; R′  Me or Et) with Me3SiCCR′′ (R′′  H, Me or SiMe3). In these reactions cleavage of the carbon-silicon bond by the nucleophilic attack of alcohol has been observed. These carbene complexes have been characterized by elemental analyses and by IR, 1H and 13C NMR spectral data. 13C NMR chemical shift data for carbene carbon atoms suggest that the carbene carbon may be very positively charged.  相似文献   

5.
The 13P and 13C spectra of the triply 13C labelled molecules (CH3)3P, (CH3)3PO, (CH3)3PS and (CH3)3PSe oriented in a nematic phase are reported. The CPC bond angles have been measured. The 13P chemical shift tensor shows a large anisotropy except in the case of (CH3)3P. The abnormal large value observed for the PSe bond length suggests a large anisotropy of the 1J(PSe) spin coupling.  相似文献   

6.
Selective oxidation of one (trans to N) carbonyl group in [Rh(8-Oxiquinolinato)(CO)2] with stoichiometric amount of Me3NO in MeCN produces a solution containing [Rh(Oxq)(CO)(Me3N)] and [Rh(Oxq)(CO)(MeCN)]. The ammonia complex, [Rh(Oxq)(CO)(NH3)], has been prepared by action of NH3 gas on this solution and characterized by IR, 1H and 13C NMR, and X-ray data. Spectral parameters, ν(CO), δ13C, and 1J(CRh), were measured in situ for a series of complexes [Rh(Oxq)(CO)(L)] (L = NAlk3, Py, PBu3, PPh3, P(OPh)3, C8H14) formed upon action of L on [Rh(Oxq)(CO)(NH3)] in THF. A new ν(CO) and δ13C based scale of σ-donor/π-acceptor properties of ligands L is proposed including NH3 and CO as the natural endpoints.  相似文献   

7.
8.
Analysis of the 13C NMR chemical shift and coupling constant data for a number of straight-chain aliphatic trialkylphosphines and their transition metal carbonyl complexes suggests that complexation leads to: (1) a deshielding of C(1) and an increase in 1J(13C31P), (2) a slight shielding of C(2) and a decrease in 2J(13C31P), and (3) little or no change in the chemical shift for C(3) and a slight increase in 3J(13C31P). Application of these rules to the assignment of the 13C NMR spectrum of P(butyl)3 led to conflict with prior work. A study of segmental motion in these derivatives via spin-lattine (T1) relaxation time measurements was therefore performed, and these data are in complete agreement with the proposed assignments. These generalizations must be applied with care, however, since the presence of either unsaturation or branching near the phosphorus can interfere with this pattern.  相似文献   

9.
13C, 1H NMR investigation of the (CH3nC5H5–nRe(CO)3 MenCpReT) n = 0–5 analogous series showed that the signals of almost all magnetic nuclei shift upfield with increase n, which also occurs in (MenCp)2M compounds (M = Fe2+, Co3+; n = 0–5). The smaller value of the C(CH3) signal (1.5 ppm.) shifts upfield when a further methyl group is introduced into the vicinal position, this shift can be attributed to the absence of the second methyl cyclopentadienyl ring. It is noteworthy that methyl cyclopentadienyl ring coordination to the transition-metal atom results in the downfield shift of the substituted carbon atom (Ckey) signal. One of the reasons for such a shift might be the reduction in screening effect of the central CpM bond π-electron current on Ckey owing to nodal properties of Cp ring e-orbitals. The δ 13C(CO), δ 17O(CO), and v(CO) values reflect successive increases of Re → CO π-back donation with increase in n.  相似文献   

10.
Proton NMR data for the Group III methyl derivatives, MMe3 and LiMMe4 are compared with NMR data for the novel tin—Group III-metal bonded species, Li[Me3SnMMe3] (M  Al, Ga, In and Tl) and for Li[(Me3Sn)n-TlMe4?n] (n = 0 to 4), reported here for the first time.The presence of tinmetal bonding in these derivatives is established by the observed tin-across-metal coupling constants and for the thallium derivatives by the additional observation of thallium-across-tin coupling.The variation in the magnitudes of 2J(SnCH), 2J(TlCH), 3J(SnMCH) and 3J(TlSnCH) are reported as a function of M and as a function of the number of Me3Sn groups bond to thallium in the [(Me3Sn)nTIME4?n]?anions. Proposals concerning the factors governing the changes in these coupling constants and the chemical shifts are presented.  相似文献   

11.
The 13C chemical shifts and 13C−119Sn, 117Sn coupling constants for several organotin(IV) compounds RxSnCl4−x (R = Me, Bun, Ph; x = 1−4) have been measured in both inert (CDCl3) and donor (DMSO-d6) solvents, as have 13C data for the compounds RxSnR′4−x (R = Me, Ph; R′ = Bun and R = Me; R′ = Ph; x = 1−3) and the compounds Me3SnX (X = pseudo halide). The δ and 1J(C-Sn) values appear to depend mainly on the type and number of substituents on tin and the donor ability of the solvent. There are linear relationships between the number of substituents (x) and both δ and 1J(C-119Sn) for almost the RxSnX4−x series (R = Me, Bun, Ph; X = Cl and R = Me, Bun; X = Ph; x = 1−4), when measured in a single solvent, e.g. CDCl3. There is an excellent linear relationship between 1J(C-119Sn) and 2J(1HC-119Sn) for the compounds MexSnCl4−x. Determination of 13C data for Me3SnCl and Ph3SnCl in a range of solvents reveals that the value of 1J(C-Sn) increases with the donor ability of the solvent.The marked increase in the values of 1J(C-119Sn) in DMSO-d6 for the compounds RxSnCl4−x(R = Me, Bun,Ph) on going progressively from x = 4 to x = suggest tin coordination numbers of 4, 5, 6 and 6, respectively. Some additional physical data are presented for the isolated complexes from DMSO and the compounds PhxSnCl4−x(x = 1−3) and Me3SnX with X = N3 or OCOMe.  相似文献   

12.
The 13C chemical shifts, the 13C31P coupling constants, and some one-bond 13C1H coupling constants were measured for the title compounds. For the ylides of phosphorus, arsenic and sulfur, the data are consistent with an sp2-hybridized ylidic carbon with a strong, localized negative charge, while for the pyridinium ylide this charge is much more delocalized. in the homologous series of salts the electron-withdrawing ability of the groups studied varies in the order: Ph3P+ < Ph3As+ « Me2S+ « Me2C5H3N+. The differences in the carbonyl chemical shift between the ylides and the corresponding salts are a measure of the resonance stabilization of the negative charge in the form X+CCO?; this stabilization varies with the groups studied in the order: Ph3P+ < Ph3As+ ≈ Me2S+ « Me2C5H3N+. The ylide—palladium(II) complexes contain a bond between the ylidic carbon and the metal: the ylidic carbon is shifted upfield in the complex with respect to the free ligand, while the adjacent carbonyl is shifted strongly downfield. These data suggest that the PdC(1) bond is strongly polarized with a high electron density on the C(1) atom which cannot be delocalized through resonance as in the free ligands.  相似文献   

13.
Silyldiazoalkanes Me3Si(LnM)CN2 (LnM = Me3Si, Me3Ge, Me3Sn, Me3Pb; Me3As, Me3Sb, Me3Bi) have been synthesized by three different routes: (a) reactions of the Me3SiCHN2 with metal amides LnMNR1R2 of Group IVB and VB elements, using Me3SnCl as catalyst; (b) reactions of the in situ prepared organolithium compound Me3SiC(Li)N2 with organometallic chlorides Me3MCl (M = Si, Ge); (c) tincarbon bond cleavage reaction of (Me3Sn)2CN2 with Me3SiN3, affording Me3SnN3, traces of bis(trimethylsilyl)diazomethane (Me3Si)CN2, trimethylsilyl(trimethylstannyl)diazomethane Me3Si(Me3Sn)CN2 and bis(trimethylsilyl)aminoisocyanide (Me3Si)2NNC as the major reaction products. IR and NMR data (1H, 13C, 29Si, 119Sn, 207Pb) of the new heterometal-diazoalkanes are reported and discussed in comparison to relevant compounds of the organometallic diazoalkane series.  相似文献   

14.
Reaction of (η5-C5Me5)Re(NO)(PPh3)(CH3) and HBF4 · OEt2 in CH2Cl2 at −78°C gives the dichloromethane complex [η5-C5Me5Re(NO)(PPh3)(ClCH2Cl)]+ BF4, which undergoes the title transformation at −35°C. The ReClCH2Cl carbon is attacked by halide nucleophiles (X) to give XCH2Cl and the chloride complex (η5-C5Me5)Re(NO)(PPh3)(Cl), and exhibits a 13C NMR resonance that is coupled to phosphorus (d, 3J(CP) 5.0 Hz) and geminal hydrogens (t, 1J(CH) 186 Hz).  相似文献   

15.
The nuclear spin—spin coupling constants J(C,H) and J(C,D) have been measured over the temperature range 200–370 K for the methane isotopomers 13CH4, 13CH3D, 13CHD3 and 13CD4. The coupling constants increase with increasing temperature for any one isotopomer and decrease with increasing secondary deuterium substitution at any one temperature. The results are entirely attributable to intramolecular effects and the data have been fitted by a weighted least-squares regression analysis to a spin—spin coupling surface thereby yielding a value for 1Je(C,H), the coupling constant at equilibrium geometry, and values for the bond length derivatives of the coupling. We find that 1Je(C,H) = 120.78 (±0.05) Hz which is about 4.5 Hz smaller than the observed value in 13CH4 gas at room temperature. Results are also reported for J(H,D) in 13CH3D and 13CHD3 for which no temperature dependence was detected.  相似文献   

16.
Alkynyl mercury compounds of the type Hg(CCR)2 (I), R′HgCCR (II) and R′HgCCHgR′ (III) have been studied by 1H, 13C and 199Hg NMR. Chemical shifts (δ1H, δ13C, δ199Hg) and coupling constants J(199Hg1H), J(199Hg13C), J(13C1H) and J(13C13C) (in natural abundance) are reported. The changes in magnitude of the coupling constants 1J(199Hg13C) and 1J(13C13C) cannot be fully explained in terms of changes in the “s-character” of the HgC bond and the CC bond, respectively. The shielding of the alkynyl carbon linked to mercury in II is decreased by ca. 23 ppm as compared to the analogous carbon in I. This indicates a greatly different degree of polarization for the HgC bonds in I and II in agreement with the behaviour of 1J(199Hg13C) and 1J(13C13C). The solvent and temperature dependence of the 199Hg chemical shift of I (R = C6H5, C4H9n) and II (R = H, R′= CH3) has been studied. The results indicate covalent interactions of I with amines, pyridine, dimethylsulphide and Br, while the interaction with acetonitrile and oxygen donors (DMSO, DMF, dioxane, acetone) is of a different nature.  相似文献   

17.
1H, 13C and 29Si NMR data for the compounds (CH3)xSi(CH2CHCH2)4-x are reported. The 1H resonances from the π system are indicative of the electron-supplying inductive effect (+I) of the (CH3SiCH2, moiety but the corresponding 13Cπ chemical shifts seem to be influenced by a sterically induced polarization of the C-H bonds. The 13CAll, 13CMe and 29Si chemical shift data reveal an important neighbour anisotropy contribution originating from the π system. Ultraviolet study of the compounds mentioned above gives indication of a σ—π conjugation in accordance with PES and ab initio results [1—5]. The trend observed in the various coupling constants is too small to be Interpreted.  相似文献   

18.
The nuclear spin coupling constants1J(183W13C) and in some cases 2J(183W13C) and 3J(183W13C) are determined for 10 tungsten carbene and 9 tungsten carbyne complexes. 1J is of analytical importance, being characteristically greater for WC than for WC bonds. This is due to different hybridisation at the carbon atom, and provides information about bond angles and polarities of WC and WCR units.Substituents R and R' in (CO)5WCRR' and X(CO)4WCR as well as the halogens X lead to minor changes in 1J. These changes are comparable to those of 1J(13C1H) in correspondingly substituted methanes. Unexpectedly 1J in_ creases with X = Cl, Br, I. 2J(183W13C) though being much smaller than 1J reflects different hydridisation at the β carbon atom.  相似文献   

19.
29Si, 13C and 1H NMR spectra are reported for the series of linear permethylpolysilanes Me(SiMe2)nMe where n = 1 to 6, for the cyclic permethylpolysilanes (Me2Si)n where n = 5 to 8, and for a few related compounds. For linear polysilanes the 29Si and 13C chemical shifts can be accurately calculated from simple additivity relationships based on the number of silicon atoms in α, β, γ and δ positions. Adjacent (α) silicon atoms lead to upfield shifts in the 29Si and 13C resonances, whereas more remote silicon atoms lead to downfield shifts. The 29Si chemical shifts of the polysilane chains are linearly related to the 13C shifts of the carbon atoms attached to the silicon. The 29Si and 13C resonances of the cyclic silanes deviate from this relationship. Ring current effects arising from σ delocalization are suggested as an explanation for the deviations. Proton-coupled 29Si NMR spectra are reported for Me3SiSiMe3 and for (Me2Si)n, n = 5 to 7.  相似文献   

20.
The complex [TpMe2,ClRh(CO)2] reacts with chloroform to give quantitatively the rhodium(III) complex [TpMe2,ClRhCl(CHCl2)(CO)] resulting from the oxidative addition of a C-Cl bond. Further reaction with diisopropylamine gives the aminocarbene complex [TpMe2,ClRhCl2(CHNiPr2)], whose X-ray crystal structure has been solved. Addition of an excess of diisopropylamine to [TpMe2,ClRh(CO)2] in chloroform provides directly [TpMe2,ClRhCl2(CHNiPr2)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号