首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The diffusion of 55Fe has been measured parallel to the c axis of Fe2O3 single crystals at temperatures in the range 708–1303°C and at an oxygen activity of unity. The tracer penetration profiles were determined using sectioning techniques. For temperatures above 900°C the tracer diffusion coefficient is given byD1(Fe) = 1.6 × 109 exp[?6.0 (eV)/kT] cm2 s?1 and below 900°C by 2.8 × 10?9 exp[?1.8 (eV)kT]. The high-temperature behaviour is probably characteristic of pure Fe2O3, whereas diffusion at lower temperatures may be influenced by impurities. The most likely defects responsible for diffusion of Fe are iron interstitials and, for oxygen, oxygen vacancies, and the observed activation energies are discussed in terms of the properties of these defects. The diffusion data and defect models have been used to predict the rate of growth of Fe2O3 and indicate that outward Fe diffusion is the dominant transport process. Previously published data for Fe2O3 growth in a variety of experimental situations have been corrected to a single rate constant using a model for multilayer growth. The corrected data are all in good agreement but are approximately two orders of magnitude greater than predicted from diffusion data, which suggests that grain boundary diffusion controls the growth of Fe2O3 in practice.  相似文献   

2.
The diffusion of 59Fe and 60Co has been measured in pure CoO and dilute iron-doped CoO, (Co1?cFecO, as a function of temperature (1000–1400°C) and oxygen partial pressure Po2), (10?7Po2 ≦ 0 21 atm) The enhancement factors for the diffusivities of iron and cobalt are nearly identical, which suggests that the primary cause of the enhancement is the increased concentration of charge-compensating cation vacancies with the addition of iron. The Fe ions dissolved in CoO appear to exist as a mixture of Fe2+ and Fe3+ ions, the fraction of iron ions in the three-plus state decreases with decreasing Po2 The simultaneous diffusion of 52Fe and 59Fe has been measured as a function of (itpo; at 1200°C The correlation factor for Fe impurity diffusion determined from the isotope-effect measurements is about the same as that for self-diffusion in CoO at high (itPo2 (2 × 10?3po2 ≦ 0 21 atm), but increases slightly with decreasing pO2 Both the enhancement-effect and isotope-effect experiments suggest that the nearestneighbor interactions between Fe ions and vacancies is small, and that the dissolved Fe ions do not have strongly bound electron holes.  相似文献   

3.
Diffusion of 51Cr in NiO single crystals in air has been studied by the tracer-sectioning technique. In the temperature range 1192–1642°C, the diffusion coefficient can be expressed by the Arrhenius expression D=Doexp(-Q/RT), with Do=(8·6±1·2)×10?3 cm2/sec and Q=67·4±1·1 kcal/mole. The use of a high specific-activity tracer and a special configuration for the diffusion anneal prevented the self-dopling effect found by Seltzer and the evaporation of chromium from the sample surface. The present results, in conjunction with published results on nickel self-diffusion in NiO and interdiffusion in the NiO?Cr2O3 system, are used to determine a chromium ion-vacancy binding energy of about 5 kcal/mole in pure NiO.  相似文献   

4.
The simultaneous diffusion of 52Fe and 59Fe has been measured in Fe3O4 as a function of equilibrium oxygen partial pressure (10?9 <po2 < 10?4 atm) at 1200°C. The po2 dependence of D goes through a minimum near 10?6 atm in agreement with earlier data of Dieckmann and Schmalzried. Comparison of the isotope effect results with correlation-factor calculations suggests that at po2 γ 10?6, diffusion occurs predominantly by vacancy jumps between the normally occupied octahedral sites on the spinel lattice; jumps between tetrahedral sites probably play a lesser role. At po2< 10?6 atm, diffusion occurs by an interstitialtype mechanism involving the simultaneous migration of two atoms. Five of the seven interstitialcy jumps considered in our correlation-factor calculations are consistent with the experimental results.  相似文献   

5.
Diffusion of 54Mn in Mn1?δO single crystals has been measured by a serial sectioning technique as a function of temperature (1000–1500°C) and deviation from stoichiometry (0.00003 < δ < 0.12). The value of m in the expression D = D0(T)pO21m varies from about 6 at low Po2 at all temperatures to a value approacing 2 at high Po2 and high temperatures, thus suggesting that diffusion occurs by doubly charged vacancies at low Po2 with increasing contributions from singly charged and neutral vacancies as Po2 (and vacancy concentration) increases. For δ near 0.1, the values of D fall below the values extrapolated from smaller defect concentrations. The isotope effect for cation self-diffusion was measured by simultaneous diffusion of 52Mn and 54Mn in Mn1?δO (0.0004 < δ < 0.116) at 1300 and 1500°C. The measured values of fΔK are independent of temperature within experimental error, and decrease from a value of 0.70 at low defect concentrations to 0.37 for large values of δ. The isotope-effect results suggest that diffusion occurs by single non-interacting vacancies at low defect concentrations; defect-defect interactions become important for δ ? 0.01. The defect-defect interactions may involve essentially individual defects or may result in defect clusters; the similarity between the present isotope-effect results and those for Fe1?δ0 suggests that defect clustering plays a significant role in mass transport in Mn1?δO at large values of δ.  相似文献   

6.
The Ag diffusion in superconducting YBa2Cu3O7 (YBaCuO) ceramic has been studied over the duration of the diffusion range 5-24 h in the temperature range 700-850 °C by the energy-dispersive X-ray fluorescence (EDXRF) technique. For the excitation of silver atoms, an annular Am-241 radioisotope source (50 mCi) emitting 59.543 keV photons was used. The temperature dependences of silver diffusion coefficients in grains (D1) and over the grain boundaries in the range 700-850 °C (D2) are described by the relations D1=1.4×10−2 exp[−(1.18±0.10)/kT] and D2=3.1×10−4 exp[−(0.87±0.10)/kT].  相似文献   

7.
The self-diffusion of 44Ti has been measured both parallel to and perpendicular to the c axis in rutile single crystals by a serial-sectioning technique as a function of temperature (1000–1500°C) and oxygen partial pressure (10?14 ? 1 atm). The oxygen-partial-pressure dependence of. D1Ti indicates that cation selfdiffusion occurs by an interstitial-type mechanism and that both trivalent and tetravalent interstitial titanium ions may contribute to cation self-diffusion. At po2 = 1.50 × 10?7 atm where impurity-induced defects are unimportant,
D1Ti(∥c)=6.50+1.33?1.11exp?(66.11±0.56 kcalmoleRTcm2S
and
D1Ti(⊥c)= 4.55+1.78?1.28exp?(64.08±0.99)kcalmoleRTcm2S.
In the intrinsic region, the ratio D1Ti (⊥c)/D1Ti(∥c) was found to increase from 1.2 to 1.6 as the temperature decreased from 1500 to 1000°C. Computations based upon the defect model of Kofstad (involving the atomic defects Ti...iTi....iand V..o), of Marucco etal. (Ti....i and V..o), and of Blumenthal etal. (Ti...i and Ti....i) are compared with the experimental data on deviation from stoichiometry, electrical conductivity, cation self-diffusion and chemical diffusion in TiO2?x. These comparisons provide values of the defect concentrations, cation-defect diffusivities, electron mobility and reasonable values of the correlation factor for cation diffusion by the interstitialcy mechanism. Only the model of Kofstad is inconsistent with the data.  相似文献   

8.
Self-diffusion of 59Fe parallel to the c axis in single crystals of Fe2O3 has been measured as a function of temperature (1150–1340°C) and oxygen partial pressure (2 × 10?3 ? pO2 ? 1 atm) The temperature dependence of the cation diffusivity in air is given by the expression
DFe1 = (1.9?1.4+5.2 × 109exp(?141.4 ± 4.0 kcal/moleRT) cm2/s
.The unusually large value of D0 is interpreted in terms of the values of the preexponential terms in the reaction constants for the creation of defects in Fe2O3. The oxygen-partial-pressure dependence of the diffusivity indicates that cation self-diffusion occurs by an interstitial-type mechanism The simultaneous diffusion of 52Fe and 59Fe has been measured in Fe2O3. The small value of the isotope effect suggests that iron ions diffuse by an noncollinear interstitialcy mechanism, which is consistent with the crystal structure of Fe2O3.  相似文献   

9.
李万万  孙康 《物理学报》2007,56(11):6514-6520
将生长得到的Cd0.9Zn0.1Te晶体在Cd气氛下及不同的温度条件下进行了退火处理. 借助已建立的退火处理过程中Cd1-xZnxTe晶体材料电阻率及导电类型变化和扩散杂质的扩散系数之间关系的模型,结合实验数据,获得了1073K,973K和873K下Cd在Cd0.9Zn0.1Te晶体中的扩散系数,并估算了其激活能. 通过使用获得的扩散系数,研究了在不同温度及饱和Cd气氛下,退火时间对Cd0.9Zn0.1Te晶体电阻率分布及导电类型等的变化的影响.  相似文献   

10.
The appearance of a “liquid-like” proton T2 component above 100°C and the relatively high value of the proton self-diffusion coefficient D = (5–8) × 10-7cm2sec-1 between 175°C and 200°C demonstrate the onset of a super-ionic state in N(CH3)4HSO4. The ratio between the “liquid” and “solid” like components shows that acid protons are responsible for the high ionic conductivity.  相似文献   

11.
Electron spin resonance has been observed for Fe3+ and Mn2+ ions occupying sites with trigonal symmetry in undoped and doped Verneuil-grown crystals of the ilmenite type compound MgTiO3. At 300 K, the fine structure parameters in the spin Hamiltonian are (in 10?4cm?1) D = +844 (± 1), (a? F) = +118 (± 1), a = 69 (± 7) for Fe3+ and D = +164 (± 1), (a ? F) = +10.2 (± l), a = 7.0 (± 1) for Mn2+. These values are compared with literature data for Fe3+ and Mn2+ in other oxides, especially Al2o3, with particular reference to the recent “superposition” theory of the effect of a trigonal distortion. From the orientation of the axes of cubic pseudosymmetry of the spin Hamiltonian, and with the assumption that a has the same sign for both ions, it is proposed that Fe3+ and Mn2+ occupy the same octahedral site, namely the Mg2+ site. Anomalous line splittings observed for one sample were attributed to twinning on (0001) or {1120} planes.  相似文献   

12.
The first band of the photoelectron spectrum of HDO has been recorded. In agreement with the selection rules of the group theory, the fundamental terms of the three symmetric vibrations of HDO (Cs symmetry) have been observed. Taking the geometry of the ion as parameters, the Franck-Condon factors for the ionization of H2O, D2O and HDO have been calculated. The geometry of the H2O+, D2O+, HDO+ ions (ground state) have been determined accurately by comparison of the calculated results with the corresponding photoelectron spectra. This geometry is approximately the same for the three ions: rOH  1,00 Å and < HOH  110°.  相似文献   

13.
We discuss here the results and the interpretation in the crystalline-field approach of some Mössbauer experiments on Fe2+ ions in the spinels GeFe2O4, GeCo2O4 and GeNi2O4. Once the sign of the quadrupolar interaction e2qQ has been deduced from a magnetic spectrum, the thermal variation of e2qQ may be used for determining the electronic level scheme of the Fe2+ ion (including the energies and wavefunctions of the levels). Then we may predict the form and magnitude of the spin hamiltonian, of the magnetic anisotropy and of the hypefine field tensor. Below TN the experimental results are expressed in terms of a molecular-field, the eventual variations of which have been studied in magnitude and in orientation; by using the same calculation for the three compounds, we obtained a reasonable agreement between the experimental and calculated values of the hyperfine field at 0°K.  相似文献   

14.
Single crystals of Bi2Sn2O7 were grown in a Bi2O3 flux. Phase transitions were identified at about 90 and 680° using X-ray, SHG, DSC, dielectric, and optical data. γ-Bi2Sn2O7, which exists above 680°C is centric and cubic with a = 10.73 Å at 700°, and it probably has the ideal pyrochlore structure. β-Bi2Sn2O7, which exists between 680° and about 90°C, is acentric but remains cubic with a = 21.40 Å. α-Bi2Sn2O7, which exists from about 90°C to below room temperature, is acentric and noncubic, probably tetragonal with a = 21.328 and c = 21.545 Å. The α-β transition is first order, and the β-γ transition appears to be second order. Substitutions of Pb2+ or Cd2+ for Bi3+ and of Ga3+, Rh3+ Sc3+, In3+, Sb5+ Nb5+ or Ta5+ for Sn4+ lower the α-β transition temperature.  相似文献   

15.
We have studied the I=2, ππ scattering using the classical Chew-Low extrapolation method. Results are given on the cross sections and the phase shifts δ02, δ22 and δ42 up to 2.2. GeV. δ02 values are -7.8 ? 3.0° at the Ko mass, -15. ? 1.5° at the ? mass and -29. ? 2.2° of the fo mass. Above the fo mass |δ02| decreases.  相似文献   

16.
Pulsed field experiments up to 450 kOe have been performed on FeSiF6.6H2O. We interpret the data: (i) in terms of spin hamiltonian constants: D = 12.3± 0.2 cm-1 (E = 0.54cm-1 being known from EPR data); (ii) in terms of axial-crystal-field parameters: δλ = orbital trigonal splitting/spin-orbit coupling = 15 ± 2; λ = -100 ± 7cm?1. The magnetic axis is found to deviate from the cristallographie c axis by an angle 1° < θ < 2°. The adiabatic cooling obtained during the pulse is discussed.Similar experiments on Fe0.15Zn0.85SiF6.6H2O and Fe0.30Zn0.70SiF6.6H2O single crystals are reported; in both cases we measure Dg = 6.0 ± 0.1cm-1. Using EPR data, we obtain D = 14.3cm-1, λ ~ ?75cm-1, δ ~ 195cm-1; using Mössbauer data, we obtain D = 15.3cm-1, λ ~ ?88cm-1, δ ~ 185cm-1.  相似文献   

17.
We present the results of a computer simulation study of the defect formation and migration energies in Fe3O4. Calculated Frenkel and Schottky energies are found to be similar in magnitude and both are considerably reduced by screening due to electron redistribution around the charged-defect species. The calculations also suggest that cation diffusion is mainly effected by a colinear interstitialcy mechanism at low Po2 and by a simple octahedral vacancy mechanism at higher Po2.  相似文献   

18.
《Solid State Ionics》2006,177(7-8):639-646
Cation diffusion in LaFeO3 has been studied using the solid state reaction between sintered bodies of La2O3 and Fe2O3 at 950–1350 °C in air or O2–N2 mixtures. LaFeO3 was the only product formed. The growth was parabolic and demonstrated to take place predominantly by diffusion of Fe3+ through the LaFeO3 layer. The self-diffusion coefficient of Fe3+ was accordingly calculated from the parabolic rate constant, and at constant activity of La2O3, aLa2O3 = 1, it shows Arrhenius-type behaviour with activation energy 320 ± 20 kJ/mol. It appeared to be independent of the surrounding pO2, but this was ascribed to lack of equilibrium with the atmosphere during growth of the LaFeO3 layer. Correspondingly, the product LaFeO3 is probably stoichiometric, and differences between our diffusivity and activation energy and those in the literature are discussed in view of this.  相似文献   

19.
Co1−xZnxFe2O4 nanoparticles were prepared by co-precipitation method with x varying from 0 to 1.0. The powder samples were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). The average crystallite sizes of the particles were determined from XRD. X-ray analysis showed that the samples were cubic spinel. The average crystallite size (DaveXR) of the particles precipitated was found to vary from 6.92 to 12.02 nm decreasing with the increase in zinc substitution. The lattice constant (ao) increased with the increase in zinc substitution. The specific saturation magnetization (MS) of the particles was measured at room temperature. The magnetic parameters such as MS, Hc, and Mr were found to decrease with the increase in zinc substitution. FTIR spectra of the Co1−xZnxFe2O4 with x varying from 0 to 1.0 in the range 400–4000 cm−1 were reported. The spinel structure and the crystalline water adsorption of Co1−xZnxFe2O4 nanoparticles were studied by using FTIR.  相似文献   

20.
Absolute photoabsorption cross sections for H2O and D2O have been measured photoelectrically from λλ 180 to 790 Å using synchrotron radiation. The cross sections increase smoothly with wavelength to ~λ610 Å, with both H2O and D2O displaying a broad absorption band extending above a nearly linear background from λλ 400 to 490 Å. The continuum has a maximum of ~ 22.5 Mb at λ 640 Å. Above λ 615 Å, superimposed on the continuum, a diffuse structure appears which is similar to the vibrational structure of the 2B2 states of H2O+ and D2O+ as observed in photoelectron spectra. The structure is believed to arise from excitation of a 1b2 electron to the vibrational levels of a Rydberg orbital with n1 ≈ 2.64.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号