首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Co(R-η-C3H4)(η-C5H5)I] is a good precursor for the preparation of some new cationic complexes as the iodide can easily be replaced; thus addition of PEt3 to the iodo-complex (R  H) gives [Co(η-C3H5)(η-C5H5)(PEt3)]+. The reactions of [Co(R-η-C3H4)(η-C5H5))I] (R  H or 2-Me) with AgBF4 give solutions containing the coordinatively unsaturated species [Co(R-η-C3H4)(η-C5H5)+. The presence of traces of water leads to the formation of [Co(R-ηC3H4)-(η-C5H5)(H2O)]+. The addition of monodentate ligands L  PEt3 PPh3, AsPh3, SbPh3, CNCH3 and bidentate ligands LL  Ph2PCH2CH2PPh2(dppe) and o-C6H4(AsMe2)2(diars), gives, respectively mononuclear [Co(2-Me-ηC3H4)-(η-C5H5)L]+ and binuclear ligand-bridged [(2-Me-ηC3H4)(η-C5H5)CoLLCo(2-Me-ηC3H4)(η-C5H5))]2+ complexes. Crystals of [Co(2-Me-ηC3H4)(η-C5H5)-(H2O)]+[BF4]- are monoclinic, space group P21/c, with a 7.858(3), b 10.262(4), c 15.078(4) Å, β 98.36(1)°. The molecular structure contains the cobalt atom bonded to planar 2-Me-allyl and cyclopentadienyl substituents, which are almost parallel with the H2O molecule in a staggered conformation with respect to the 2-Me group.  相似文献   

2.
The reactions of arenediazomolybdenum(II) complexes such as [(η-C5H5)Mo(N2C6H4CH3-p)I2]2, (η-C5H5)Mo(CO species with neutral and anionic monodentate or chelating ligands have been investigated. The new arenediazo complexes isolated from these reactions include neutral species such as (η-C5H5)Mo(PPh3)(N2C6H4CH3-p)I2 and (η-C5H5)Mo(N2C6H4CH3-p) cations of the type [η-C5H5)Mo(bipy)(N2C6H4CH3-p)I]+ and the anion [(η-C5H5)Mo(N2C6H4CH3-p)I3]?. The structures of the new complexes are discussed.  相似文献   

3.
It is shown that (1,2,7-η3-2-Me-benzyl)(η5-C5H5)Mo(CO)2 exits in solution as one isomer which is fluxional, probably via (7-η1-2-Me-benzyl)((η5-C5H5)Mo(CO)2, with ΔG370 = 23.6 ± 1.0 kcal mol−1. In contrast, (1,2,7-η3-3-Me-benzyl)(η5-C5H5)Mo(CO)2 exits as two isomers at −20°C, which undergo interconversion at room temperature with ΔG 15.7 kcal mol−1. This dynamic process is an allyl rotation. It is probable that there is also a low energy [1,5]-sigmatropic shift.  相似文献   

4.
《Tetrahedron: Asymmetry》1998,9(23):4219-4238
A wide variety of planar chiral cyclopalladated compounds of general formulae [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl(L)] (with L=py-d5 or PPh3), [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}(acac)] or [Pd{[(R1–CC–R2)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (with R1=R2=Et; R1=Me, R2=Ph; R1=H, R2=Ph; R1=R2=Ph; R1=R2=CO2Me or R1=CO2Et, R2=Ph) are reported. The diastereomers {(Rp,R) and (Sp,R)} of these compounds have been isolated by either column chromatography or fractional crystallization. The free ligand (R)-(+)-[{(η5-C5H4)–CHN–CH(Me)–C10H7}Fe(η5–C5H5)] (1) and compound (+)-(Rp,R)-[Pd{[(Et–CC–Et)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (7a) have also been characterized by X-ray diffraction. Electrochemical studies based on cyclic voltammetries of all the compounds are also reported.  相似文献   

5.
Reactions of η5-C5H5Fe(CO)2CH2CCR (R  CH3, C6H5, and CH2Fe(CO)25-C5H5)) with HBF4 in acetic anhydride yield [η5-C5H5Fe(CO)22CH2CCHR)]+BF?4. The resultant cationic iron-η2-allene complexes react with a wide range of nucleophiles (Nu) to give the following types of behavior: (a) addition of Nu to carbon-1 of the η2-allene fragment (with NaBH4, (C2H5)2NH, and P(C6H5)3, inter alia), (b) addition of Nu to carbon-2 of the η2-allene fragment (with NaOCH3), (c) addition of Nu to the carbonyl carbon (with NaOC2H5), (d) deprotonation of the iron-η2-allene cation to the parent propargylic complex (with N(C2H5)3), and (e) nonselective reactions to yield a mixture of products (with CH3Li). Of these, the most common is behavior (a); together with the protonation of η5-C5H5Fe(CO)2CH2CCR it stimulates the two-step (3 + 2) cycloaddition reactions between electrophilic molecules and these iron-propargyl complexes.  相似文献   

6.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

7.
The new ruthenium(II) complex [(C8H10)RuCl2]n (1) (C8H10 = 1,3,5-cyclooctatriene; n ⩾ 2) has been obtained from the reaction of RuCl3·xH2O with 1,3,5,7-cyclooctatetraene in refluxing ethanol. Reduction of [(C8H10)RuCl2]n and [(C7H8)RuCl2]2 (2) (C7H8 = 1,3,5-cyclooctatriene) by Na/Hg amalgam in the presence of isoprene (C5H8) gives the novel ruthenium(O) complexes [(η6-C8H10)Ru(η4-C5H8)] (3) and [(η6-C7H8)Ru(η4-C5H8)] (4). [(η6-C7H8Ru(η4-C5H8)] reacts with CO and HBF4 to give [(η6-C7H8)Ru(η3-C5H9)(CO)][BF4] (C5H9 = trans-1,2-dimethylallyl (5a); 1,1-dimethylallyl (5b)).  相似文献   

8.
The reduction of copper (II) chloride by molybdenum and rhenium biscyclopentadienyl hydrides upon their interaction in donor-type solvents has been studied by NMR, X-ray diffraction, and magnetic methods. It is established that the ionic complex [(η5-C5H5)2Re]+[CuCl2]? forms ortho rhombic crystals with a - 13.696(2) Å, b = 7.317(1) Å, c = 5.969(1) Å, space group Pm21n, Z = 2. The cyclopentadienyl rings make a bent-sandwich with an angle between the ring centres and Re atom of 150.1°; the ClCuCl angle being 174.8° and the ReCu minimum distance 4.346(29) Å. The solution of [(η5-C5H5)2Re]+ [CuCl2]? seems to activate the CH bond of the C5H5 rings, which results in the addition of the [(C5H5)(C5H4)ReH]+ hydride ion.  相似文献   

9.
Preliminary reactions of the metal stabilized carbocationic species [(η-C5H5)Ni(μ-η2(Ni),η3(Mo)-HC2CMe2)Mo(CO)2(η-C5H4Me)]+ BF4 (Ni-Mo) with nucleophiles are reported. The Ni-Mo cationic propargylic complex undergoes nucleophilic attack by sodium methoxide to regenerate the neutral μ-alkyne complex [(η-C5H5)Ni{μ-η22-HC2CMe2(OMe)}Mo(CO)2(η-C5H4Me)] (Ni-Mo), from which the stabilized carbocation was originally derived by protonation. The new complexes [(η-C5H5)Ni{μ-η22-HC2CMe2(C5H5)}Mo(CO)2(η-C5H4Me)] (Ni-Mo), which exist as an inseparable mixture of 1(c)-1,3- and 2(c)-1,3-cyclopentadienyl isomers, were also obtained. When the Ni-Mo cations were treated with potassium t-butoxide, the alkyne isomers with pendant 1(c)-1,3- and 2(c)-1,3-cyclopentadienyl groups are also formed. The μ-hydroxyalkyne complex [(η-C5H5)Ni{μ-η22-HC2CMe2(OH)}-Mo(CO)(η-C5H4Me)] (Ni-Mo) was also isolated concurrently, and presumably arises from nucleophilic attack of fortuitously present hydroxide ions in the BuO reagent on the Ni-Mo cation. When NaBH4 was added to the Ni-Mo propargylic, nucleophilic attack by hydride resulted and the μ-iPrC2H heterobimetallic complex [(η-C5H5)Ni{μ-η22-HC2Pri}Mo(CO)2(η-C5H4Me)] (Ni-Mo) was recovered in good yield. Small quantities of other side-products were isolated and characterized spectroscopically. Some tantalizing differences in reactivity were observed when the corresponding Ni-W stabilized carbocation was reacted with methoxide ions. When the not fully characterized solid formed by protonating [(η-C5H5)Ni(μ-η22-{HC2CMe2)(OMe)}W(CO)2(η-C5H4Me)] (Ni-W) was treated with methoxide ions, regioisomers (1(c)-1,3- and 2(c)-1,3-cyclopentadienyl species) of composition [(η-C5H5)Ni{μ-η22-HC2CMe2(C5H5)}W(CO)2(η-C5H4Me)] (Ni-W) were formed. Direct reaction of the pure cation [(η-C5H5Niμ-η23-HC2CMe2)W(CO)2(η-C5H4Me)]+ (Ni-W) with methoxide also generated the same 1(c)-1,3- and 2(c)-1,3-cyclopentadiene-substituted alkyne complexes. Unlike the case with the Ni-Mo complexes, the initial μ-HC2CMe2(OMe) species was not regenerated.  相似文献   

10.
The reactions of ferrocenylketimines [(η5-C5H4CCH3NAr)Fe(η5-C5H5)] (Ar=a variety of substituted phenyls) with methyl-iodide in refluxed dichloromethane followed by reduction with sodium borohydride in absolute ethanol led to [(η5-C5H4CH(CH3)N(CH3)Ar)Fe(η5-C5H5)]. Compound [(η5-C5H4CH(CH3)N(CH3)C6H4Cl-p)Fe(η5-C5H5)] (3d) has been characterized structurally. Compound 3d is monoclinic, space group P21/n, with a=8.908(2) Å, b=13.63(1) Å, c=14.510(3) Å and β=107.03°.  相似文献   

11.
《Polyhedron》1999,18(20):2583-2595
The reaction of the novel ferrocenyl Schiff base: [(η5-C5H5)Fe{(η5-C5H4)-CH=N-(C6H4-2-C6H5)}] (1) with Na2[PdCl4] and Na(CH3COO)·3H2O in a 1:1:1 molar ratio in methanol is reported. In this reaction two different di-μ-chloro-bridged cyclopalladated complexes: [Pd{[(η5-C5H3)-CH=N-(C6H4-2-C6H5)]Fe(η5-C5H5)}(μ-Cl)]2 (2a) and [Pd{[(C6H4-2-C6H4)-N=CH-(η5-C5H4)]Fe(η5-C5H5)}(μ-Cl)]2 (2b) can be formed depending on the experimental conditions. Compounds 2a and 2b, which differ in the nature of the metallated carbon atom (Csp2,ferrocene or Csp2,biphenyl, respectively), undergo cleavage of the ‘Pd(μ-Cl)2Pd’ bridges in the presence of thallium (I) acetylacetonate, deuterated pyridine or triphenylphosphine giving the monomeric derivatives: [Pd(CN)(acac)] (3a, 3b) and [Pd(CN)Cl(L)] {with L=py- d5(4a, 4b), PPh3(5a, 5b)}. The reactions of 2 with 1,2-bis(diphenylphosphino)ethane (dppe) reveal that the two isomers (2a and 2b) exhibit different reactivity versus dppe. These results have been interpreted on the basis of steric effects.  相似文献   

12.
The complexes [(η5-C5H5)RhCl2]2 and [(η5-C5Me5)RhCl2]2 react with stoichiometric amounts of isocyanide ligands L to give (η5-C5H5)RhLCl2 and (η5-C5Me5)RhLCl2 (L = CNC6H11, CNC6H4CH3-p); an excess of ligand L reacts further with (η5-C5Me5)RhLCl2 to give the cationic complex [(η5-C5Me5)RhL2Cl]+ which was isolated as tetraphenylborate salt. The cationic complexes [(η5-C5Me5)RhL(PPh3)Cl]+ and [(η5-C5Me5)Rh(Ph2PC2H4PPh2)Cl]+ were obtained in the reaction of (η5-C5Me5)RhLCl2 with PPh3 and Ph2PC2H4PPh2 respectively. Unidentified solids which do not contain the cyclopentadienyl moiety were obtained in the analogous reactions of (η5-C5H5)RhLCl2 with an excess of isocyanide or of tertiary phosphine.The complexes (η5-C5H5)Rh(CNC6H11)Cl2 and (η5-C5Me5)Rh(CNC6H11)Cl2 react with SCN? or SeCN? giving the corresponding dithiocyanate or diselenocyanate derivatives in which the pseudohalogen groups are S- or Se-bonded to the metal atom. The analogous reactions with C6Cl5MgCl gave the chiral complexes (η5-C5H5)Rh(CNC6H11)(C6Cl5)Cl and (η5-C5Me5)Rh(CNC6H11)(C6Cl5)Cl.The potentially chelating anion Ph2PSS? reacts with (η5-C5H5)Rh(CNC6Hn11)Cl2 and (η5-C5Me5)Rh(CNC6H11)Cl2 to give (η5-C5H5)Rh(CNC6H11)(SSPPh3)Cl and (η5-C5Me5)Rh(CNC6H11)(SSPPh2)Cl in which the dithio ligand acts as monodentate; these compounds react with MeI or EtI to give the dihalide derivatives and the esters Ph2PSSMe and PSSEt. The complex [(η5-C5Me5)Rh(CNC6H11)(SSPPh2)]Cl was obtained by refluxing a benzene solution of the corresponding neutral complex; the cyclopentadienyl derivative failed to give the analogous chelate complex.The complexes (η5-C5H5)RhLCl2, (η5-C5Me5)RhLCl2 and [(η5-C5Me5)RhL2Cl]+ (L = CNC6H11) were found to be unreactive towards amines.  相似文献   

13.
Treatment of the μ(η1)-alkyne complex (η-C5H5)2Rh2(CO)2(CF3C2CF3) with trimethylamine-N-oxide results in mono-decarbonylation to give the μ(η2)- alkyne complex (η-C5H5)2Rh2(μ-CO)(CF3C2CF3). Coordinative addition of a variety of ligands L to the monocarbonyl complex has been achieved at room temperature, and stable adducts (η-C5H5)2Rh2(CO)L(CF3C2CF3) (L  CO, CNBut, PPh3, PMePh2, P(OMe)3, AsPh3, PF3 and PF2(NEt2)) have been fully characterized by infrared and NMR spectroscopy. In each complex, there is a μ(η1)-attachment of the hexafluorobut-2-yne and a trans-arrangement of CO and L. The spectroscopic data establish that there is rapid scrambling of CO and L when L  CNBut. An unstable adduct is formed when (η-C5H5)2Rh2(μ-CO)(CF3C2CF3) is dissolved in pyridine.  相似文献   

14.
The compounds [M{(CH2)4C(η-C5H4)2}(η-C5H5)Cl] (M=Zr*, Hf), [M{(CH2)4C(η-C5H4)2}(η-C5H5)Me] (M=Zr, Hf), [(η-C5H5)MCl2{(CH2)4C(η-C5H4)2}MCl2(η-C5H5)] (M=Zr, Hf), [(η-C5H5)ZrCl2{(CH2)4C(η-C5H4)(η-C9H6)}ZrCl2(η-C5H5)], [(η-C5H5)MMe2{(CH2)4C(η-C5H4)2}MMe2(η-C5H5)] (M=Zr, Hf), [(η-C5H5)ZrCl2{(CH2)4C(η-C5H4)2}HfCl2(η-C5H5)], [(η-C5H5)MCl2{(CH2)4C(η-C5H4)2}Rh(η-C8H12)] (M=Zr*, Hf), [(η-C5H5)ZrCl2{(CH2)4C(η-C5H4)2}TiCl3], [(η-C5H5)ZrMe2{(CH2)4C(η-C5H4)2}HfMe2(η-C5H5)], [(η-C5H5)MMe2{(CH2)4C(η-C5H4)2}Rh(η-C8H12)] (M=Zr*, Hf) have been prepared and characterised. * indicates the crystal structure has been determined. Their catalytic properties for ethene and propene polymerisation have been explored.  相似文献   

15.
The two cyclooctatetraene metal carbonyls that have been synthesized are the tetrahapto derivative (η4-C8H8)Fe(CO)3 and the hexahapto derivative (η6-C8H8)Cr(CO)3 using the reactions of cyclooctatetraene with Fe(CO)5 and with fac-(CH3CN)3Cr(CO)3, respectively. Related C8H8M(CO)n (M = Ti, V, Cr, Mn, Fe, Co, Ni; n = 4, 3, 2, 1) species have now been investigated by density functional theory in order to explore the scope of cyclooctatetraene metal carbonyl chemistry. In this connection, the existence of octahapto (η8-C8H8)M(CO)n species is predicted as long as the central metal M does not exceed the 18-electron configuration by receiving eight electrons from the η8-C8H8 ring. Thus the lowest energy structures (η8-C8H8)Ti(CO)n (n = 3, 2, 1), (η8-C8H8)M(CO)n (M = V, Cr; n = 2, 1), and (η8-C8H8)Mn(CO) all have octahapto η8-C8H8 rings. An exception is (η6-C8H8)Fe(CO), with a hexahapto η6-C8H8 ring and thus only a 16-electron configuration for the iron atom. Hexahapto (η6-C8H8)M(CO)n structures are predicted for the known (η6-C8H8)Cr(CO)3 as well as the unknown (η6-C8H8)Ti(CO)4, (η6-C8H8)V(CO)3, (η6-C8H8)Mn(CO)2, and (η6-C8H8)Fe(CO)2 with 18, 18, 17, 17, and 18 electron configurations, respectively, for the central metal atoms. There are two types of tetrahapto C8H8M(CO)n complexes. In the 1,2,3,4-tetrahapto (η4-C8H8)M(CO)n complexes two adjacent CC double bonds, forming a 1,3-diene unit similar to butadiene, are bonded to the metal atom. In the 1,2,5,6-tetrahapto (η2,2-C8H8)M(CO)3 derivatives two non-adjacent CC double bonds of the C8H8 ring are bonded to the metal atom. The known (η4-C8H8)Fe(CO)3 is a 1,2,3,4-tetrahapto complex. The unknown isomeric 1,2,5,6-tetrahapto complex (η2,2-C8H8)Fe(CO)3 is predicted to lie ∼15 kcal/mol above (η4-C8H8)Fe(CO)3. The related 1,2,5,6-tetrahapto complexes (η2,2-C8H8)Cr(CO)4, (η2,2-C8H8)Mn(CO)4, [(η2,2-C8H8)Mn(CO)3], (η2,2-C8H8)Co(CO)2, and (η2,2-C8H8)Ni(CO)2 are all predicted to be low-energy structures.  相似文献   

16.
The negative ion mass spectra of a series of monomeric and dimeric η5-cyclopentadienyl transition metal carbonyls have been examined. The base peak in the case of the monomeric compounds (η5-C5H5)V(CO)4, (η5-C5H5)Mn(CO)3 and (η5-CH3C5H4)Mn(CO)3 arises from a reductive decarbonylation of the parent molecule—the resulting radical anion [M–CO]? is formally isoelectronic with the molecular cations [M]? observed in the positive ion mass spectra of these compounds and subsequently undergoes successive decarbonylations to the ‘aromatic’ cyclopentadienyl anions. For the compound (η5-C5H5)Co(CO)2, however, a molecular anion was observed as the base peak which has been formulated as [(η3-C5H5)Co(CO)2]? in the light of considerations based on the rare gas rule. As expected, the dimeric molecules [(η5-C5H5)M(CO)3]2 (where M = Cr or Mo) and [(η5-C5H5)Fe(CO)2]2 (and its methyl analogue) undergo reductive cleavage of their metal-metal bonds to give the anions [(η5-C5H5)M(CO)3]? and [(η5-C5H5)Fe(CO)2]? as the base peaks in their negative ion mass spectra. The dimeric nickel compound [(η5-C5H5)Ni(CO)]2, however, reductively decarbonylates to the [M-CO]? radical anion as its predominant fragmentation in the gas phase. Very low abundances of [(η5-C5H5)Fe(CO)2] and [(η5-CH3C5H4)Fe(CO)2] were also observed.  相似文献   

17.
The methylidene complex [(η-C5H5)Re(NO)(PPh3)(CH2)]+PF6?(I) yields kinetically labile sulfonium salts when treated with CH3SCH3, CH3SCH2C6H5, and (η-C5H5)Re(NO)(PPh3)(CH2SCH3) (V);the binuclear adduct formed in the latter case, [(η-C5H5)Re(NO)(PPh3)CH2]2S+CH3 (VI), is substantially more stable than the others and undergoes hydride transfer disproportionation to [(η-C5H5)Re(NO)(PPh3)(CHSCH3)]+PF6?(VII) and (η-C5H5)Re(NO)(PPh3)(CH3) (VIII) when heated.  相似文献   

18.
The complexes (η5-C5H5)Pd(η1-C5H5)PR3 which are prepared from [Cl(PR3)-Pd]2(μ-OCOCH3)2 and TlC5H5 are fluxional in solution. According to the 1H and 13C NMR spectra at various temperatures, two dynamic processes occur. The process with the higher activation energy is a π/σ (η51) exchange of the two different cyclopentadienyl ligands, whereas the second one with the lower activation energy presumably is a metallotropic rearrangement (1,2-shift). The coalescence temperature for the η51 exchange depends on the size of the phosphine. The X-ray structural analysis of (C5H5)2PdPPri3 proves that it exists as a “frozen” η5 + η1 structure in the crystal with the palladium approximately in a square-planar coordination. The η5-bonded cyclopentadienyl ring shows some unusual bonding patterns which are obviously electronic in nature. EHT-MO calculations for (η5-C5H5)PdCH3(PH3) indicate that in this model system alternating CC distances in the ring and a stronger bond of the metal to one of the five carbon atoms of the C5H5 ligand are to be expected. The calculations suggest that in similar complexes possessing a six-electron donor ligand like C5H5? and a metal fragment which is isolobal to PdCH3(PH3)+, analogous distortions should be observed. Some reactions of the compounds (η5-C5H5)Pd(η1-C5H5)PR3 are described.  相似文献   

19.
A reaction between (η5-C5Me5)TiCl3 and C5H5Tl in benzene solution has afforded (η5-C5Me5)(η5-C5H5)TiCl2 (I) in quantitative yield. (η5-C5Me5)(η5-C5H5)HfCl2 (III) has been prepared in 83% yield from a reaction between (η5-C5Me5)HfCl3 and C5H5Na·DME in refluxing toluene solution. The crystal and molecular structures of (η5-C5Me5)(η5-C5H5TiCl2 (I), (η5-C5Me5)(η5-C5H5)ZrCl2 (II) and (η5-C5Me5)(η5-C5H5HfCl2 (III) have been determined from X-ray data measured by counter methods. The three compounds are isostructural, crystallizing in the orthorhombic space group Pnma. The cell constants are: (I): a 9.873(1), b 12.989(3), c 11.376(4) Å and Dcalc 1.45 g cm?3 for Z = 4; (II): a 9.930(3), b 13.231(9), c 11.628(3) Å and Dcalc 1.58 g cm?3 for Z = 4; (III): a 9.938(1), b 13.156(2), c 11.582(2) Å and Dcalc 1.97 g cm?3 for Z = 4. In each case the metal atom resides on a crystallographic mirror plane which bisects both cyclopentadienyl rings and the ClMCl bond angle. The MCl bond lengths are 2.3518(9) for I, 2.4421(9) for II and 2.415(1) Å for III. The metal—cyclopentadienyl and metal—pentamethylcyclopentadienyl bond distances average 2.38(5) and 2.42(2) Å for I, 2.50(4) and 2.53(2) Å for II, and 2.48(4) and 2.50(1) Å for III respectively.  相似文献   

20.
Addition of methoxide to either geometric isomer of the benzylidene complex [(η-C5H5)Re(NO)(PPh3)(CHC6H5)]+PF6? (1t, 1k) affords (η-C5H5)Re(NO)(PPh3)(CH(OCH3)C6H5 (2t, 2k) in which a new chiral center has been generated stereospecifically or with high stereoselectivity. Reaction of 2t and 2k with Ph3C+PF6? results in the chemospecific abstraction of a methoxy group and the stereospecific regeneration of 1t and 1k, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号