首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of the osmium-antimony cluster Os3(μ-H)(μ-SbPh2)(μ32-C6H4)(CO)9 with AsPh3 at room temperature afforded the o-phenylene cluster Os3(μ-H)(SbPh2)(μ22-C6H4)(CO)9(AsPh3) by nucleophilic addition via a metal-metal bond cleavage, and the substitution product Os3(μ-H)(SbPh2)(μ32-C6H4)(CO)8(AsPh3). It reacted with tBuNC to afford the adduct Os3(μ-H)(SbPh2)(μ22-C6H4)(CO)9(CNtBu) quantitatively. This adduct isomerised slowly on standing via migration of the isonitrile, while photolysis led to decarbonylation to Os3(μ-H)(SbPh2)(μ22-C6H4)(CO)8(CNtBu). All the products have been characterised completely, including by X-ray crystallography, and their structures exhibit very long Os-Os bonds.  相似文献   

2.
The complex Os3(CO)92-H)23-S) reacts with KOH/MeOH to produce the anionic complex [Os3(CO)92-H)(μ3-S)?, which reacts in turn with RO+ (R = Me, Et) to form HOs3(CO)9SR. This complex is especially reactive towards ligands L (L = C2H4, CO, PR3 and MeCN) to generate complexes of the type Os3(CO)92-H)(μ2-SR)(L). At 125°C the complex Os3(CO)92-H)(μ2-SR)(C2H4) (in the presence of C2H4) ejects RH and CO to form Os3(CO)82-H)?(μ3-S)(CHCH2). The structures of the new complexes are described and the probable reaction pathways discussed.  相似文献   

3.
By the reaction of Cp(CO)2MnCCHPh (I) with H2Os3(CO)10 (II) the tetranuclear mixed-metal complex CpMnOs32-CHCHPh)(μ-H)(μ-CO)(CO)11 (III) was prepared. An X-ray study of the structure of III showed that it is a spiked, tetranuclear cluster with the Mn atom linked to one of the vertices of the osmium triangle; the MnOs bond is bridged by CO and CHCHPh groups, the latter being σ-bonded to Os and η2-coordinated by Mn. In the course of the formation of III, hydrogenation and n-π rearrangement of the initial phenylvinylidene ligand take place. In solution, complex III readily eliminates the [CpMn(CO)2] fragment to give triosmium clusters containing unsaturated organic ligands: HOs32-CHCHPh)(CO)10, H2Os33-CHCPh)(CO)9, and H2Os33-CCHPh)(CO)9.  相似文献   

4.
The reaction of Os3(CO)10(NCMe)2 with closo‐o‐C2B10H10 has yielded two interconvertible isomers Os3(CO)93‐4,5,9‐C2B10H8)(μ‐H)2 ( 1 a ) and Os3(CO)93‐3,4,8‐C2B10H8)(μ‐H)2 ( 1 b ) formed by the loss of the two NCMe ligands and one CO ligand from the Os3 cluster. Two BH bonds of the o‐C2B10H10 were activated in its addition to the osmium cluster. A second triosmium cluster was added to the 1 a / 1 b mixture to yield the complex Os3(CO)9(μ‐H)23‐4,5,9‐μ3‐7,11,12‐C2B10H7)Os3(CO)9(μ‐H)3 ( 2 ) that contains two triosmium triangles attached to the same carborane cage. When heated, 2 was transformed to the complex Os3(CO)9(μ‐H)(μ3‐3,4,8‐μ3‐7,11,12‐C2B10H8)Os3(CO)9(μ‐H) ( 3 ) by a novel opening of the carborane cage with loss of H2.  相似文献   

5.
Treatment of H2Os3(CO)10 with excess ethylene forms ethane and a hydridovinyl cluster complex HOs3(CO)10(CHCH2), which rearranges in refluxing octane to the vinylidene complex H2Os3(CO)9(CCH2).  相似文献   

6.
The reaction between 1-pyrenecarboxaldehyde (C16H9CHO) and the labile triosmium cluster [Os3(CO)10(CH3CN)2] gives rise to the formation of two new compounds by competitive oxidative addition between the aldehydic group and an arene C-H bond, to afford the acyl complex [Os3(CO)10(μ-H)(μ-COC16H9)] (1) and the compound [Os3(CO)10(μ-H) (C16H8CHO)] (2), respectively. Thermolysis of [Os3(CO)10(μ-H)(μ-C16H9CO)] (1) in n-octane affords two new complexes in good yields, [Os3(CO)9(μ-H)2(μ-COC16H8)] (3) and the pyryne complex [Os3(CO)9(μ-H)23112-C16H8)] (4).In contrast, when 1-pyrenecarboxaldehyde reacts with [Ru3(CO)12] only one product is obtained, [Ru3(CO)9(μ-H)23112-C16H8)] (5), a nonacarbonyl cluster bearing a pyrene ligand. All compounds were characterized by analytical and spectroscopic data, and crystal structures for 1, 2, 4 and 5 were obtained.  相似文献   

7.
Hydrogenation of Os3(CO)93-CPh)(μ3-COMe) (1) at one atmosphere results in alkylidyne-alkylidyne coupling, forming the alkyne complex (μ-H)2Os3(CO)93, η2-C2(OMe)Ph) (3). Reduction of 1 by two equiv. of sodium benzophenone ketyl, followed by protonation with tetrafluoroboric acid, yields the phenylacetylide complex(μ-H)OS3(CO)932-CCHPh) (4). Sequential reduction/protonation involving (μ-H)OS3(CO)103-CPh) (2) also generates 4, apparently via benzylidyne-carbonyl coupling.  相似文献   

8.
Reaction of the cluster Os3(μ-H)(μ-OH)(CO)10 (1) with 1-naphthol afforded the isomeric clusters 2a and 3a with the formulae Os3(μ-H)23-1-OC10H6)(CO)9. A similar reaction with 2-naphthol, however, gave Os3(μ-H)(μ-2-OC10H7)(CO)10, 4b, and the analogue of 2a. These clusters have been structurally characterised to confirm the mode of anchoring of the naphthols.  相似文献   

9.
The reaction of bis(diphenylphosphino)methane (dppm) with Fe3(CO)12 gave the known complexes Fe(CO)4 (dppm), Fe2(CO)7 (dppm), in addition to Fe2CO)5(dppm)2. Two new dppm derivatives of Ru3CO)12, Ru3(CO)9(μ-dppm)(η1-dppm) and Ru3(CO)6(dppm)3 have been isolated and spectroscopically characterised. From the reaction of Os3(CO)12 with dppm, the derivatives Os3(CO)10(dppm), Os3(CO)9(μ-dppm)(η1-dppm) and Os3(CO)8(dppm)2 have been isolated. The crystal structure of Os3(CO)9(μ-dppm)(η1-dppm) has been determined.  相似文献   

10.
The ability of H2Os3(CO)10 to undergo addition reactions under mild conditions allows associative CO substitution via isolable intermediates of the type H2Os3(CO)10 (L = CO, PMe2Ph, PPh3 or PhCN) whose spectra and structures are discussed. It is probable that simple addition of alkenes to H2Os3(CO)10 is in part responsible for its facile catalysis of alkene isomerisation. The kinetics of catalytic conversion of terminal to internal alkenes and of allylic alcohols to aldehydes or ketones are reported and discussed. The reactions of H2Os3(CO)10 with allylic halides to give the complexes HOs3X(CO)10 and Os3X2(CO)10 where X = Cl, Br or I are described. Compound H2Os3(CO)10 complies with the 18ρ-rule but nevertheless has a chemistry much like that of coordinatively unsaturated molecules.  相似文献   

11.
Dodecacabonyltriosmium reacts with diene ligands (D) such as 2,4-trans, trans- and 2,4-cis, trans-hexadiene and 1,6- and 1,5-heptadiene to give H2Os3D(CO)9, H4Os4(CO)12 and two isomers of molecular formula HOs3-(D  H)(CO)9 in addition to Os2(D  2H)(CO)6 and OsD(CO)3. The structures of the trimetal complexes show that dehydrogenation, isomerization and rearrangement of the organic substrates occur before the coordination to the metal cluster. 2,3-Dimethyl-1,3-butadiene and dodecacabonyltriosmium give only the well known bi- and mono-metal complexes. The results are compared with those obtained in the reactions of the some organic molecules with dodecacabonyltriruthenium.  相似文献   

12.
Organic azides [N3R] react with [Os3(CO)11(NCMe)] and with [Os3(μ-H)2(CO)10] to form [Os3(CO)10(NCMe)(N3COR)] (R  Ph) and [Os3(μ-H)(CO)10(HN3R)] (R  Ph, n-Bu, CH2Ph, cyclo-C6H11), respectively; the latter may be converted to [Os3(μ-H)2(CO)93-NR)] by thermolysis; the molecular structure of the phenyl derivative of each class of compound has been confirmed by x-ray analysis.  相似文献   

13.
The reaction of Os3 (CO)10(NCCH3)2 and triethylamine provides H2 Os3 (CO)10 and HOs3 (CO)10(CHCHNEt2) in equimolar amounts. The structure of the latter compound has been shown to involve an iminium ion center anchored to the Os3 framework by a bridging (substituted) methylene moiety.  相似文献   

14.
The reaction of the cluster Os3(CO)10(μ-H)(μ-γ-C5H3O2) (1) with a number of alkynes under thermal or visible light irradiation conditions, afforded in most cases the dinuclear complexes Os2(CO)6(μ-γ-C5H3O2)(μ-LH) (L=PhCCPh, tBuCCH, tBuCCMe or EtCCEt) (2) or the trinuclear chain complexes Os3(CO)9(μ-H)(μ-γ-C5H3O2)(μ-RCCHC6H4) (R=H, Ph) (3). In the case of PhCCPh, a new isomer of Os3(CO)8(PhCCPh)2, viz., Os3(CO)8(μ-PhCCPh)(μ-PhCCHC6H4) (7) has been isolated and characterised.  相似文献   

15.
The characterisation of (μ-H)(μ-NCHCF3)Os3(CO)10 by neutron single crystal structure analysis at 20 K is reported. The 1,1,1-trifluoroethylidenimido ligand derived from the reaction of trifluoroacetonitrile with H2Os3(CO)10 bonds as a three-electron donor, symmetrically bridging the same edge of the Os3 cluster as the μ-hydride ligand.  相似文献   

16.
Treatment of H2Os3(CO)10 with cyclonona-l,2-diene produced HOs3(CO)9C9H13 and Os2(CO)6(C9H4)2. Single crystal X ray analysis has shown that the latter is not isostructural with Fe2(CO)6(C9H14)2.  相似文献   

17.
Reaction of the activated cluster [Os3(CO)11(CNMe)] with primary arsine AsH3 forms the arsinidine compound [H2Os33-AsH)(CO)11] (1a, 1b), which on further reaction with [Os3(CO)11(NCMe)] yields [(CO)11Os3As(Os3(CO)9H3)] (2) and with [H2Os3(CO)10] yields [H2Os3(CO)9As(Os3(CO)9H2)] (3). Similarly [H2Os3(CO)10] reacts with AsH3 at room temperature to afford 3 in good yields. Thermal degradation and rearrangement of 2 gives the pentanuclear cluster [H2Os5(CO)17AsH] (4).  相似文献   

18.
The isomerisation of H2Os3(CO)10[CN(CH2)3Si(OEt)3] to HOs3(CO)10-[CN(H)(CH2)3Si(OEt)3] is accelerated by interaction with some oxides; both complexes afford HOs3(CO)10[CN(H)(CH2)3Si(OEt)3it-x(O)x] as oxide supported clusters.  相似文献   

19.
The functionalised cluster Os3(CO)10(CH3CN)2 reacts at room temperature with trimethylsilylacetylene to afford the orange derivative Os3(CO)10(Me3SiC2H) which undergoes decarbonylation and hydrogen migration to give the cluster HOs3(CO)9(CCSiMe3), which has been fully characterised by an X-ray diffraction study.  相似文献   

20.
The reaction of [Os3(CO)10(NCMe)2] (1) with aldehydes in refluxing cyclohexane affords the metal clusters [Os3(CO)10(μ-H)(COR)] (2, R = Me, Ph, CH2Ph or C6H13) in ca. 50% yield. The compound 2 (R = CH2Ph) undergoes hydrogenation under pressure to give the corresponding alcohol, while decarbonylation occurs in the presence of Me3NO to give the Me3N-substituted derivative [Os3(CO)9(NMe3)(μ-H)(COCH2Ph)] in 90% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号