首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation and properties of complexes of the general formulae [Rh(TFB)(diolefin)]ClO4, [Rh(TFB)(arene)]ClO4 and [Rh(TFB)L2]ClO4, (TFB = tetrafluorobenzobarrelene, L = dimethylsulfoxide and tetrahydrothiophen) are described. The crystal structures of the arene complexes (arene = C6Me6, C6H3Me3 and C6H4Me2) have been solved by X-ray methods. The three compounds crystallize in quite similar lattices: R3c, a = b = 27.122, 26.233, 25.731 and c = 17.079, 16.388, 16.256 Å, respectively. δR-plots for about 2000 reflections show the agreement in the refinements carried out up to R-values of 5%, 5% and 4% respectively. The Rh atom is coordinated to the double bonds of the TFB and to the arene ring in all three compounds, but the deviation from planarity of the arene and its relative position with respect to the TFB moiety varies.  相似文献   

2.
The preparation of arene-rhodium(I) complexes of the general formula Rh(Me3TFB)PhBPh3 and [Rh(Me3TFB)(arene)]ClO4 (Me3TFB = trimethyltetrafluorobenzobarrelene; arene = C6H6?nMen (n = 0, 1, 2, 3, 4 or 6); C6H6?nXn (X = F, n = 2 or 6; X = Cl, n = 1 or 2) are described. For arenes of the type C6H6?nXn the dissociation of the coordinated arene (studied by NMR spectroscopy in deuteroacetone) is complete, but for arenes of the type C6H6?nMen it decreases with increasing methyl substitution in the arene ligand.The crystal structure of [Rh(Me3TFB)(1,4-C6H4Me2)]ClO4 has been determined by X-ray diffraction. The compound crystallizes in the Pbca space group, with lattice periodicities of 17.7393(4), 15.7816(3) and 16.0071(3) Å. δR-analysis, for the 3953 total recorded reflections, support the refinement carried out to a final R-value of 0.062. The bonding of the arene to the rhodium is η6, with the ring slightly puckered to give a distorted skew conformation.  相似文献   

3.
A new series of cationic areneiridium(I) complexes of formula [Ir(barrelene)(arene)]+ or [Ir(barrelene)(PhNRPh)]+ (R= Ph or H) have been synthesized from neutral iridium complexes of the type [IrY(barrelene)]x (barrelene = Me3TFB, Y = Cl or OMe (x = 2), Y = acac (x = 1); barrelene = TFB, Y = OMe (x = 2), Y = acac (x = 1)). The crystal structures of [Ir(Me3TFB)(1,4-C6H4Me2)]ClO4 and [Ir(TFB)(PhNPh2)]BF4·CH2Cl2 have been determined by X-ray diffraction. They crystallize in the space groups Pbca and Pna21 respectively with lattice constants of 17.6947(11), 15.8072(10), 16.0019(11) Å and 9.8059(2), 20.8097(9), 14.3367(4) Å. Final R factors were 0.063 and 0.042 for the observed data. Both complexes show a staggered arrangement between the arene and the TFB moieties and deviation from planarity of the coordinated arene ligands. In the second complex the IrC and NC distances, the CNC angle, the type of arene puckering, and the spectroscopic data indicate a distortion of the coordinated arene towards a η5-coordinated iminocyclohexadienyl form.  相似文献   

4.
Rhodium or iridium complexes of formula [M(diolefin)(az)]+ have been prepared by treating [MCl(diolefin)]2 complexes with silver salts and azulene, and also by treating [Rh(diolefin)2]+ with azulene. The reactions of some representative complexes have been studied. Reaction of [M(C5Me5)(Me2CO)3]2+ with azulene appears to give dinuclear diazulene cationic complexes. The crystal structure of compound [Rh(TFB)(az)]PF6 has been solved by X-ray methods. It crystallizes in the space group P21/c with cell constants 8.4241(4), 16.6911(8), 15.0026(7) Å, 95.897(6)°. Refinement gave R = 0.027 and Rw = 0.032 for 2991 observed reflexions. The Rh atom is coordinated to the five-membered ring, with RhC distances shortest for the atoms which are trans to the diolefinic double bonds. The bonding scheme within the azulene ligand differs from that in the parent hydrocarbon.  相似文献   

5.
Piano‐stool‐shaped platinum group metal compounds, stable in the solid state and in solution, which are based on 2‐(5‐phenyl‐1H‐pyrazol‐3‐yl)pyridine ( L ) with the formulas [(η6‐arene)Ru( L )Cl]PF6 {arene = C6H6 ( 1 ), p‐cymene ( 2 ), and C6Me6, ( 3 )}, [(η6‐C5Me5)M( L )Cl]PF6 {M = Rh ( 4 ), Ir ( 5 )}, and [(η5‐C5H5)Ru(PPh3)( L )]PF6 ( 6 ), [(η5‐C5H5)Os(PPh3)( L )]PF6 ( 7 ), [(η5‐C5Me5)Ru(PPh3)( L )]PF6 ( 8 ), and [(η5‐C9H7)Ru(PPh3)( L )]PF6 ( 9 ) were prepared by a general method and characterized by NMR and IR spectroscopy and mass spectrometry. The molecular structures of compounds 4 and 5 were established by single‐crystal X‐ray diffraction. In each compound the metal is connected to N1 and N11 in a k2 manner.  相似文献   

6.
Reaction of [{Ru(η-arene)Cl2}2] (arene = C6H6, 1,4-MeC6H4CHMe2) with NaNH2 in CH3CN gives a dark oil which upon treatment with ROH/NaBPh4 (R = Me, Et) gives the triple bridged complexes [Ru2(η-arene)2(OR)3] [BPh4]. The structure of the benzene complex (R = Me) has been verified by X-ray analysis. The crystals are monoclinic, space group P21/n with a 11.725(4), b 15.573(5), c 18.739(2) Å; β 103.29(2)°. These complexes undergo reactions with tertiary phosphines and hydrogen halides. There is also spectroscopic evidence for intermolecular exchange of the bridging alkoxo ligands on mixing pure solutions of the [M2(arene)2(OR)3]+ cations (M = Ru, Os). Reaction of [{Ru(η-arene)Cl2}2] with Pb(SEt)2 in CH3CN gives the analogous [Ru2(arene)2(SEt)3]+ cations.  相似文献   

7.
The reaction of bis(arene)iron(II) salts (arene = mesitylene or hexamethylbenzene) or benzenedichlororuthenium(II) dimer with Tl[3,1,2-TlC2B9H11] in THF produces neutral, air-stable π-(arene)(Fe, Ru)C2B9H11 complexes in low or moderate yields. The metallocarboranes are formal analogues of [π-(arene)Fe, Ru)n+(C5H5)] species, and a single crystal X-ray structure of the title compound has established the closo sandwich geometry expected for the molecule on the basis of electron counting rules. The carborane cage was found to be disordered in the crystal but the essential features of the molecular geometry were not obscured. The mesitylene is symmetrically bound to the iron, and the Fe-arene (centroid) distance of 1.60 Å is similar to that found in the previously-characterized [(CH3)6C6]FeI(C5H5) complex, despite the difference in the metal electronic configurations (d6 vs d7) and the change from the B9C2H112? cage to C5H5?. Crystals of 3,1,2-(η6-1,3,5-(CH3)3C6H3)FeC2B9H11 are orthorhombic, space group Pn21a, with a = 12.638(4), b = 12.432(4), c = 9.686(3) Å.  相似文献   

8.
The reaction of LAuIn (L = P(C6H5)3, P(2-MeC6H4)3 or P(4-MeC6H4)3; In = indolyl group) with the solvated complexes [(diolefin)Rh(Me2CO)x]ClO4 gives the novel heterometallic complexes [(diolefin)Rh(μ-In)AuL]ClO4. The mononuclear arene derivatives [(diolefin)Rh(η6-HIn)]ClO4 react with methanolic KOH to give the binuclear complexes [(diolefin)Rh(μ-OMe)]2, while [(COD)Rh(η6-HIn)]ClO4 reacts with KOH in water/acetone to give the hydroxo-bridged complex [(COD)Rh(μ-OH)]2.  相似文献   

9.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

10.
Half-sandwich complexes of formula [(ηn-ring)MClL]PF6 [L = (S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-isopropyloxazoline; (ηn-ring)M = (η5-C5Me5)Rh; (η5-C5Me5)Ir; (η6-p-MeC6H4iPr)Ru; (η6-p-MeC6H4iPr)Os] have been prepared and spectroscopically characterised. The molecular structures of the rhodium and iridium compounds have been determined by X-ray crystallography. The related solvate complexes [(η5-C5Me5)ML(Me2CO)]2+ (M = Rh, Ir) are active catalysts for the Diels-Alder reaction between methacrolein and cyclopentadiene.  相似文献   

11.
The compound Mo(η-C5H4(CH2)2SPrn)2(SPrn)2 acts as a bidentate ligand giving the heteronuclear bi-metallic compounds [Mo(η-C5H4CH2CH2SPrn)2-(SPrn)2(PtCl2)],[Mo(η-C5H4CH2CH2SPrn)2(SPrn)2(PdCl2)2], [Mo(η-C5C4CH2CH2SPrn)2(SPrn)2(RhCl3)2], [Mo(η-C5H4CH2CH2SPrn)2(μ-SPrn)2Rh(dppe)]BF4, [Mo(η-C5H4CH2CH2SPrn)2(μ-SPrn)2(COD)Rh]Cl, [Mo(η-C5H4CH2CH2SPrn)2-(μ-SPrn)2Pt(PPh3)2](PF6)2, and the compound [Mo(η-C5H4(CH2)2-μ-SPh)2Cl2Rh(COD)]Cl bonds via the ring-sulphur substituents giving [Mo(η-C5H4(CH2)2-μ-SPh)2-Cl2Rh(COD)]Cl.  相似文献   

12.
A quite general approach for the preparation of η5-and η6-cyclichydrocarbon platinum group metal complexes is reported. The dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, C10H14 and C6Me6) and η5-pentamethylcyclopentadienyl rhodium and iridium complexes [(η6-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) react with 2 equiv. of 4-amino-3,5-di-pyridyltriazole (dpt-NH2) in presence of NH4PF6 to afford the corresponding mononuclear complexes of the type [(η6-arene)Ru(dpt-NH2)Cl]PF6 {arene = C10H14 (1), C6H6 (2) and C6Me6 (3)} and [(η6-C5Me5)M(dpt-NH2)Cl]PF6 {M = Rh (4), Ir (5)}. However, the mononuclear η5-cyclopentadienyl analogues such as [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br], [(η5-C5Me5)Ru(PPh3)2Cl] and [(η5-C9H7)Ru(PPh3)2Cl] complexes react in presence of 1 equiv. of dpt-NH2 and 1 equiv. of NH4PF6 in methanol yielded mononuclear complexes [(η5-C5H5)Ru(PPh3)(dpt-NH2)]PF6 (6), [(η5-C5H5)Os(PPh3)(dpt-NH2)]PF6 (7), [(η5-C5Me5)Ru(PPh3)(dpt-NH2)]PF6 (8) and [(η5-C9H7)Ru(PPh3)(dpt-NH2)]PF6 (9), respectively. These compounds have been totally characterized by IR, NMR and mass spectrometry. The molecular structures of 4 and 6 have been established by single crystal X-ray diffraction and some of the representative complexes have also been studied by UV–Vis spectroscopy.  相似文献   

13.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

14.
The crystal and molecular structure of the monoligand trimetallic complex [{Rh(C5Me5)}3Cl5np3]PF6 · 0.5 C3H8O (np3  tris(2-diphenylphosphinoethyl)-amine) have been established by a single-crystal X-ray diffraction study. The cation of the complex contains two Rh(C5Me5)Cl2 units each bound through the metal to one phosphorus atom of the ligand and a Rh(C5Me5)Cl group in which the rhodium is bound to the third phosphorus atom and to the nitrogen of the tetradentate ligand.The crystals are triclinic, space group P1, with cell dimensions a 28.598(8), b 13.757(4), c 10.748(3) Å, α 90.69(4), β 96.67(4), γ 99.71(4)°, Dc 1.38 g cm?3 for Z  2. The structure was solved by three dimensional Patterson and Fourier syntheses and refined by least-squares techniques to a final conventional R value of 0.098.  相似文献   

15.
Field desorption mass spectra are reported for a range of [M(CO)3(η-arene)]X (MMn or Re, XBF4 or PF6) salts. In most cases the spectra are simple, being dominated by molecular, [M]+·, [M + 1]+, and [MCO]+ ions for the cationic part of their structure. However, with the π-chloroarene complexes [Mn(CO)3(η-ClC6H5)]PF6 and [Mn(CO)3(η-1-Cl, 4-MeC6H4)]PF6, facile loss of the chloro substituent and further fragmentation leads to unusually complex spectra, which include strong peaks arising from recombination of fragment species. Cluster ions are also noted in several cases, allowing identification of the anion.  相似文献   

16.
The structure of (η3-allyl)carbonylchlorobis(dimethylphenylphosphine)-iridium(III) hexafluorophosphate, [Ir(η3-C3H5)Cl(CO)(P(CH3)2(C6H5))2][PF6], has been determined from three-dimensional X-ray data to add support for a proposed mechanism of the oxidative addition of allyl halides to IrX(CO)(PR3)2 (X = halide). The compound crystallizes in space group C52h-P21/c with four formula units in a cell of dimensions a = 11.027(1), b = 12.230(2), c = 19.447(5) Å, and β = 103.16(2)0. Least-squares refinement of the structure has led to a value of the conventional R index (on F) of 0.066 for the 3018 independent reflections having F20>3—(F20). The crystal structure consists of discrete, monomericions. The hexafluorophosphate anion is disordered. The coordination geometry around the iridium atom may be described as octahedral, with the chloro ligand trans to the carbonyl group and each phosphorus atom trans to a terminal carbon of the allyl group. Structural parameters: Ir—P = 2.366(4), 2.347(3);Ir—Cl = 2.389(3); Ir—C(allyl) = 2.28(1), 2.24(1),2.25(1); Ir—C (carbonyl) = 1.85(1) Å; P—Ir—P = 105.7(1); C(terminal)—Ir—C(terminal) = 66.2(8); C—C—C = 125(2)o. The allyl group makes an angle of 126o with the P—Ir—P plane. Correlations between geometric structure and number of d electrons are noted among several M—C3H5-complexes, and are interpreted in the light of theoretical models of the M—C3H5- bond.  相似文献   

17.
A new series of monoselenoquinone and diselenoquinone π complexes, [(η6p‐cymene)Ru(η4‐C6R4SeE)] (R=H, E=Se ( 6 ); R=CH3, E=Se ( 7 ); R=H, E=O ( 8 )), as well as selenolate π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Se)][SbF6] (R=H ( 9 ); R=CH3 ( 10 )), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated‐arene and hydroxymonochlorinated‐arene ruthenium complexes [(η6p‐cymene)Ru(C6R4XCl)][SbF6]2 (R=H, X=Cl ( 1 ); R=CH3, X=Cl ( 2 ); R=H, X=OH ( 3 )) as well as the monochlorinated π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Cl)][SbF6]2 (R=H ( 4 ); R=CH3 ( 5 )). The X‐ray crystallographic structures of two of the compounds, [(η6p‐cymene)Ru(η4‐C6Me4Se2)] ( 7 ) and [(η6p‐cymene)Ru(η4‐C6H4SeO)] ( 8 ), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.  相似文献   

18.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

19.
Reaction of the benzene-linked bis(pyrazolyl)methane ligands, 1,4-bis{bis(pyrazolyl)-methyl}benzene (L1) and 1,4-bis{bis(3-methylpyrazolyl)methyl}benzene (L2), with pentamethylcyclopentadienyl rhodium and iridium complexes [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh and Ir) in the presence of NH4PF6 results under stoichiometric control in both, mono and dinuclear complexes, [(η5-C5Me5)RhCl(L)]+ {L = L1 (1); L2 (2)}, [(η5-C5Me5)IrCl(L)]+ {L = L1 (3); L2 (4)} and [{(η5-C5Me5)RhCl}2(μ-L)]2+ {L = L1 (5); L2 (6)}, [{(η5-C5Me5)IrCl}2(μ-L)]2+ {L = L1 (7); L2 (8)}. In contrast, reaction of arene ruthenium complexes [(η6­arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6) with the same ligands (L1 or L2) gives only the dinuclear complexes [{(η6-C6H6)RuCl}2(μ-L)]2+ {L = L1 (9); L2 (10)}, [{(η6-p-iPrC6H4Me)RuCl}2(μ-L)]2+ {L = L1 (11); L2 (12)} and [{(η6-C6Me6)RuCl}2(μ-L)]2+ {L = L1 (13); L2 (14)}. All complexes were isolated as their hexafluorophosphate salts. The single-crystal X-ray crystal structure analyses of [7](PF6)2, [9](PF6)2 and [11](PF6)2 reveal a typical piano-stool geometry around the metal centers with six-membered metallo-cycle in which the 1,4-bis{bis(pyrazolyl)-methyl}benzene acts as a bis-bidentate chelating ligand.  相似文献   

20.
5-C5(CH3)5]Co(O2C6H4) crystallizes in the orthorhombic space group Pnma with a 12.942(4), b 12.902(4), c 8.543(3) Å, V 1426(1) Å3, and Z = 4. Least-squares refinement of 1688 independent observed reflections, F(obs) ? 2.5σ(Fobs), gives RF 3.79 and RwF 3.72%. The cyclopentadienyl ring contains two short (1.412(3) Å) and three longer (〈av〉 1.430(4) Å) CC bond lenghts, consistent with a slight preference for diolefin bonding. The O2C6H4 fragment is best described as a catecholate with a CO bond distance of 1.338(3), and a CoO distance of 1.837(2) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号