首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of [Fe2(η-C5H5)2(CO)2(L)(CNMe)] (L  CO or CNME) with HgX2 (X  Cl, Br or I) give [Fe(η-C5H5)(CO)2HgX] and [Fe(η-C5H5)(L)-(CNMe)X] as the sole products in ca. quantitative yields; this is consistent with the previously proposed mechanism for the reactions of electrophiles with polynuclear metal carbonyl derivatives.  相似文献   

2.
The oxidative cleavage of [Fe2(η-C5H5)2(CO)4-n(CNMe)n] (n=0−2) by 2AgX gives mononuclear products. It is shown to be a two-electron process in most solvents but a one-electron process in acetonitrile. The two-electron oxidations proceed by way of adducts such as [Fe2(η-C5H5)2(CO)(CNMe)(μ-CO){;μ-CN(Me)AgPPh3};]BF4 which are isolable when n = 2, detectable when n = 1 and postulatetd when n = 0. The one-electron process gives no adducts, and 1AgX cleaves all of the substrate to [Fe(η-C5H5)(CO)(L)(NCMe)]+ and [Fe(η-C5H5)(CO)(L)]. (L  CO or CNME). The latter may combine or react with added CHBr3 to give [Fe(η-C5H5)(CO)(L)Br]. The structure of [Fe(η-C5H5)(CO)2-(CNMe)]BF4 has been determined by X-ray diffraction.  相似文献   

3.
The complexes [(η5-C5H5)Fe(CO)2(SCCR)] (R=tBu, SiMe3) have been obtained by reaction of [(η5-C5H5)Fe(CO)2I] and the corresponding LiSCCR. These are the first examples of mononuclear iron compounds containing alkynethiolate ligands. The crystal structure of [(η5-C5H5)Fe(CO)2(SCCSiMe3)] has been determined by X-ray diffraction. The role of [(η5-C5H5)Fe(CO)2(SCCSiMe3)] as a metalloligand in its reactions with metal carbonyls has been explored.  相似文献   

4.
The versatile reagent [η5-C5H5)Fe(CO)2(THF)]BF4 has been isolated from the reaction of (η5-C5H5)Fe(CO)2I and AgBF4 in THF and shown to react in CH2Cl2 with olefins to yield [(η5-C5H5)Fe(CO)22-olefin)]BF4 complexes. For most olefins the yields are high. The yield in these reactions can be increased by treating the CH2Cl2 solution of [(η5-C5H5)Fe(Co)2(THF)]BF4 and olefin with gaseous BF3 in order to complex the THF as the BF3-THF adduct. Most striking is the increase in yield for the cyclohexene complex from 17% to 92%.  相似文献   

5.
The reaction between InCl and [Mo2(CO)6(η-C5H5)2] affords [InCl&{;Mo(CO)3(η-C5H5)&};], 6a which has been characterised as a THF adduct [InCl(THF)&{;Mo(CO)3(η-C5H5)&};2], 10, by X-ray crystallography. An additional complex, [InCl2&{;Mo(CO)3(η-C5H5)&};2], 11, is also formed in this reaction. Similar products are reported for reactions involving [M2(CO)6(η-C5H5)2] (M = Cr, W). The reaction between InCl and [Fe2(CO)4(η-C5H5)2] affords [InCl{Fe(CO)2(η-C5H5)}2], 17, and [InCl2{Fe(CO)2(η-C5H5)}], whilst that between InI and [Fe2(CO)4(η-C5H5)2] affords [InI{Fe(CO)2(η-C5H5)}2], 19.  相似文献   

6.
The new tris(ferrocenylamine) ditertiary phosphine 1,1′-{FcCH2N(CH2PPh2)CH25-C5H4)}2Fe [Fc = (η5-C5H5)Fe(η5-C5H4)] has been prepared along with two coordination complexes. All compounds have been characterised by a combination of spectroscopic and analytical methods. The single crystal X-ray structure of the pentametallic Ru2Fe3 complex 5 has been determined.  相似文献   

7.
Treatment of the μ-alkylidyne clusters [Fe2W(μ3-CC6H4Me-4)(μ-CO)- (CO)8(η-C5H5)] and [Co2W(μ3-CMe)(CO)8(η-C5H5)] with PPh2H affords a series of new μ-phosphido-μ-hydrido alkylidyne complexes which undergo protonation with HBF4·Et2O to give cationic derivatives. The X-ray structure of [Co2W(μ-H)(μ3-CMe)(μ-PPh2)(CO)6(η-C5H5)] has been determined.  相似文献   

8.
The coupling of [Ru(CO)2L(η4-cot)] (L = CO or PPh3, cot = cyclooctatetraene) with [Fe(CO)35-cyclohexadienyl)]+ or [Fe{P(OMe)3}(NO)23-allyl)]+ yields respectively the dimetallic species [Ru(CO)2L(η23-C8H8{Fe(CO)34-C6H7)}] (3) and the allyl-substituted derivative [Ru(CO)2L(η5-C8H8CH2C(Me)CH2)][PF6] (5) whose X-ray structure is reported; paramagnetic [Co(η-C5H5)2] and [Ru(CO)35-cyclohexadienyl)]+ give diamagnetic [Ru(CO)34-C6H7C5H6(o-C5H5)] (8) via CC bond formation and one-electron reduction.  相似文献   

9.
The isocyanide complexes [Fe(η-C5H5)(CO)2CNR][PF6] and Cr(CO)5CNR (R = CH3, C6H11, C6H5) are conveniently prepared at ?50°C from carbonyl metallates, isothiocyanates, and phosgene. At room temperature Na[Fe(η-C5H5)(CO)2] reacts with isothiocyanates (11) to give the isocyanide bridged complexes [Fe2(η-C5H5)2(μ-CO)(μ-CNR)(CO)2].  相似文献   

10.
Various di- and poly-nuclear transition metal complexes have been investigated as catalysts for the metal carbonyl substitution reaction. The complexes [{(η5-C5H4R)Fe(CO)2} 2] (R = H, Me, CO2Me, OMe, O(CH2)4OH) and [{(η5-C5H5)-Ru(CO)2} 2] are active catalysts for a range of substitution reactions including the probe reaction [Fe(CO)4(CNBut)] + ButNC → [Fe(CO)3(CNBut)2] + CO. [{(η5-C5Me5)Fe(CO)2}2] is catalytically active only on irradiation with visible light. For [{η5-C5H5)Fe(CO)2}2] and a range ofisocyanides RNC ( R = But, C6H5CH2, 2,6-Me2C6H3), catalyst modification by substitution with isocyanide is a major factor influencing the degree of the catalytic effects observed, e.g. [{(η5-C5H5)Fe(CO)(CNBut)}2] is approximately 35 times as active as [(η5-C5H5)2FE2(CO)3(CNBut)] for the [Fe(CO)4(CNBut)] → [Fe(CO)3(CNBut)2] conversion. Mechanistic studies on this system suggest that the catalytic substitution step probably involves a rapid intermolecular attack of isonitrile, possibly on a labile catalyst-substrate radical intermediate such as {[Fe(CO)4(CNR)][(η5-C5H5)Fe(CO)2]}; or on a reactive radical cation such as [Fe(CO)4(CNR)]+ generated via electron transfer between the substrate and the catalyst. Other transition metal complexes which also catalyze the substitution of CO by isocyanide in [Fe(CO)4(CNR)] (and [M(CO)6] (M = Cr, Mo, W), [Mn2(CO)10], [Re2(CO)10]) include [Ru3(CO)12], [H4Ru4(CO)12], [M4(CO)12] (M = Co, Ir) and [Co2(CO)8]. These reactions conform to the general mechanistic patterns established for [{(η5-C5H5)Fe(CO)2}2], suggesting a similar mechanism. A range of materials, notably PtO2, PdO and Pd/C, act as promoters for the homogeneous di- and poly-nuclear transition metal catalysts, and can even be used to induce activity in normally inactive dimer and cluster complexes e.g. [Os3(CO)12]. This promotion is attributed to at least three possible effects: the removal of catalyst inhibitors, a catalyzed substitution of the homogeneous catalyst partner, and a possible homogeneous-heterogeneous interaction which promotes the formation of catalytic intermediates.  相似文献   

11.
UV irradiation of [Ru2(CO)4(η-C5H5)2] yields the tri- and tetra-ruthenium complexes [Ru2(CO)4(η-C5H5){η-C5H4Ru(CO)2(η-C5H5)}] and [Ru4(CO)63-C5H4)2(η-C5H5)2]. The μ3-C5H4 ligand in the latter has been characterised through an X-ray diffraction study on [Ru4(CO)5{P(OMe)3}(μ3-C5H4)2(η-C5H5)2].  相似文献   

12.
The preparation of a series of complexes of the types [RhCl(CO)2(L)], [RhCl(cod)(L)] and [Rh(cod)(L)2]ClO4, where L is a ligand incorporating a ferrocenyl group and a pyridine ring is described. Complexes were characterized using NMR, IR and electronic spectroscopy. The electrochemical behaviour of the complexes was examined using cyclic voltammetry. The X-ray structures of three of the complexes, [RhCl(CO)2{NC5H4CNC6H45-C5H4)Fe(η5-C5H5)}], [RhCl(cod)(3-Fcpy)] and [RhCl(cod){3-Fc(C6H4)py}], were determined.  相似文献   

13.
Nucleophilic addition to a carbonyl ligand has been shown to compete with attack at the metal or dienyl ring in the reactions of [Fe(CO)3(1–5-η-dienyl)]+ cations with iodide ion. Thus, the novel acyl iodide complex [Fe(CO)2(COI)(1–5-η-C6H7)] is found to be a major product from the reaction of [Fe(CO)3(1–5-η-C6H7)]+ with I in nitromethane or acetone solvents. The other major initial product is the ring adduct [Fe(CO)3(1–4-η-IC6H7)]. Exposure of the acyl iodide species to light causes its rapid decomposition. Analogous behaviour towards I is shown by the related [Fe(CO)3(1–5-η-C7H9)]+ and [Fe(CO)3(1–5-η-2-MeOC6H6)]+ cations.  相似文献   

14.
Bis-(η4-1,5-cyclooctadiene)nickel(0) reacted with η5-C5H5Fe(CO)2Cl, η3-C5H5Fe(CO)3Cl, Mn(CO)5Cl and {Mn[P(OMe)3](CO)4}2 to form metal metal bonded coupling products. Partial reduction of Mn(CO)5Cl gave [MnCl(CO)3(THF)]2 shown to have a chlorine-bridged C2h structure by X-ray diffraction analysis. Ligand transfer also accompanied the reduction of Fe[P(OMe)3]2(CO)2Br2 and Fe(CO)4Cl2 to Fe[P(OMe)3]2(CO)3 and Fe(CO)5, respectively. Only partial reduction was observed for Ti(acac)2Cl2 and (η5-C5H5)2TiCl2 which gave [Ti(acac)2Cl]2 and (η5-C5H5)2Ti(py)Cl, respectively.  相似文献   

15.
[MoCl(CO)35-C5H5)] on photolysis with allyl or crotyl halides C5H4RX gives MoIV complexes [MoX2(CO)(η3-C3H4R)(η5-C5H5)] (R = H, X = Cl, Br, I; R = Me, X = Cl, Br). [WCl(CO)35-C5H5)] under similar conditions gives trihalides [WX3(CO)25-C5H5)] (X = Cl, Br) on reaction with C3H5Cl and C3H5Br while [WCl(CO)35-C5H4SiMe3)] and [CrI(CO)35-C5H5)] react with allyl chloride to give [WCl3(CO)25-C5H4SiMe3)] and [CrCl25-C5H5)] respectively.  相似文献   

16.
[Fe(η-C5Me5)(CO)2(OH2)]+ BF4- (2a) reacts with alkenes and alkynes to give the new complexes [Fe(η-C5Me5)(CO)2(alkene)]+ BF4- and [Fe(η-C5Me5)(CO)2(alkyne)]+ BF4-. The crystal structure of the ruthenium analogue [Ru(η-C5Me5)(CO)2(OH2)]+ CF3SO3- (2b) is described.  相似文献   

17.
The reaction between [η5-C5H5)Fe(CO)2I] (I) and 1 equivalent of L (group 15 donor ligand) in the presence of catalysts (e.g. Pd/CaCO3, PdO, [η5-C5H5)Fe(CO)2]2 (II)) yields [η5-C5H5)Fe(CO)(L)I] (phosphines, diphosphines, phosphite), [η5-C5H5)Fe(CO)2L]I (phosphines) and [η5-C5H5)Fe(CO)(LL)]I (diphosphines). [η5-C5H5)Fe(CO)2L]I can be converted into [η5-C5H5)Fe(CO)(L)I] in the presence of II. The reaction between [η5-C5H5)Fe(CO)(PMePh2)I] or [η5-C5H5)Fe(CO)2(PMePh2)]I and PMePh2 is also catalysed by II and yields in both instances [η5-C5H5)Fe(CO)(PMePh2)2]I. In the series of catalysed reactions the displacement sequence was found to be PMePh2 > I > CO.  相似文献   

18.
Heterometallic Cluster Complexes of the Types Re2(μ-PR2)(CO)8(HgY) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3) Dinuclear complexes Re2(μ-H)(μ-PR2)(CO)8 and ReMo(μ-H)(μ-PR2)(η5-C5H5)(CO)6 (R = phenyl, cyclohexyl) were deprotonated and reacted as anions with HgCl2 to compounds of the both types Re2(μ-PR2)(CO)8HgCl) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgCl). The heterometallic three-membered cluster complexes correspond to an isolobal exchange of a proton against a cationic HgCl+ group. For one of the products ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) has been shown its conversion with NaW(η5-C5H5)(CO)3 to ReMo(μ-PCy2)(η5-C5H5)(HgW(η5-C5H5)(CO)3) under substitution of the chloro ligand, par example. The newly prepared compounds were characterized by means of IR, UV/VIS and 31P NMR data. A complete determination of the molecular structure by single crystal analyses was done in the case of Re2(μ-PCy2)(CO)8(HgCl) and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) which both are dimer because of the presence of an asymmetric dichloro bridge, and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgW(η5-C5H5)(CO)3). The structural study illustrates through comparison the influence of various metal types on an interaction between centric and edge-bridged frontier orbitals in three-membered metal rings.  相似文献   

19.
Transition Metal Substituted Acylphosphanes and Phosphaalkenes. 17. Synthesis and Structure of the μ-Isophosphaalkyne Complexes [(η5-C5H5)2(CO)2Fe2(μ-CO)(μ-C?PC6H2R3)] (R = Me, iPr, tBu) . Condensation of (η5-C5H5)2(CO)2Fe2(μ-CO)(μ-CSMe)}+SO3CF3? ( 6 ) with 2,4,6-R3C6H2PH(SiMe3) ( 7 ) ( a : R = Me, b : R = iPr, c : R = tBu) affords the complexes (η5-C5H5)2(CO)2Fe2(μ-CO)(η-C?PC6H2R3-2,4,6) ( 9 a–c ) with edge-bridging isophosphaalkyne ligands as confirmed by the x-ray structure analysis of 9 a .  相似文献   

20.
《Polyhedron》1988,7(6):443-448
The salts [Re(CR)CO)25-C9H7)][BF4] [R = C6H4Me-4 or C6H3Me-2,6; η5- C9H7 = indenyl] have been prepared and used to synthesize the dimetal compounds [FeRe(μ-CR)(μ-NO)(CO)45-C9H7)]. The iron-rhenium species containing a bridging p- tolylmethylidyne ligands react with [Fe2(CO)9] or with [Ru(CO)4(η-C2H4)], respectively, to yield the trimetal compounds ([FeMRe(μ3-CC6H4Me-4)(μ-CO)(μ-NO)(CO)65-C9H7)] (M = Fe or Ru).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号