首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nature of the protonation reaction of (
o(CO)3 (M = Mo, W; R = Me, Ph, p-MeC6H4) (2) (obtained from (CO)3CpMCH2CCR (1) and Co2(CO)8) to give (CO)3 Cp(CO)2 (3) was further investigated by a crossover experiment. Thus, reaction of an equimolar mixture of 2b (M = W, Cp = η5-C5H5, R = Ph) and 2e (M = W, Cp = η5-C5H4Me; R = p-MeC6H4) with CF3COOH affords only 3b (same M, Cp, and R as 2b) and 3e (same M, Cp, and R as 2e) to show an intramolecular nature of this transformation. Reaction of (CO)3CpWCH2CCPh (1b) with Co4(CO)12 was also examined and found to yield 2b exclusively. Treatment of 1 with Cp2Mo2(CO)4 at 0–5°C provides thermally sensitive compounds, possibly (CO)2Cp
oCp(CO)2 (5), which decompose at room temperature to give Cp2Mo2(CO)6 as the only isolated product.  相似文献   

2.
The heating of the ionic complex [CpMn(CO)2(NO)]+SnCl3-(I) in methylene chloride gives a neutral complex CpMn(CO)(NO)SnCl3 (II). The latter reacts with lithium phenylacetylenide to yield a complex CpMn(CO)(NO)Sn(C≡CPh)3 (III). According to the X-ray diffraction data, complexes II and III contain shortened Mn-Sn bonds (2.5178(5) and 2.5436(12) Å, respectively).  相似文献   

3.
Treatment of the hydrosulfido tungsten complex CpW(CO)3SH with acid chlorides (RCOCl) or sulfonyl chlorides (RSO2Cl) affords CpW(CO)3SCOR (1) [R = Me (a), CH2Cl (b), Ph (c), 4-C6H4NO2 (d)] and CpW(CO)3SSO2R (2) [R = Me (a), Ph (b), 4-C6H4Cl (c), 4-C6H4NO2 (d)], respectively. The novel complexes, 1 and 2, were fully characterized by elemental analyses, IR and 1H NMR spectroscopy. The solid state structures of CpW(CO)3SCOPh (1c) and CpW(CO)3SSO2-4-C6H4Cl (2c) were determined by an X-ray crystal structure analysis.  相似文献   

4.
The facile reaction of [CpCr(CO)3]2 (Cp = η5-C5H5) (1) with one mole equivalent of 2,2′-dithiodipyridine ((C5H4NS)2(SPy)2) at ambient temperature led to the isolation of dark brown crystalline solids of CpCr(CO)22-SPy) (2) in ca. 72% yield. 2 undergoes quantitative conversion to CpCrCl21-SPyH) (3) with HCl. The reaction 1 with one mole equivalent of 2-mercaptopyrimidine (C4H3N2SHHSPym) at ambient temperature led to the isolation of reddish-brown crystalline solids of CpCr(CO)22-SPym) (4) and green solids of CpCr(CO)3H (5) in yields of ca. 42% and 46%, respectively. Reaction of 4 with HCl and subsequent workup in acetonitrile resulted in the cleavage of the thiolate ligand, giving the 15-electron chromium(III) species CpCrCl2(CH3CN) (6) and free 2-mercaptopyrimidine. The complexes 2-4 have been determined by single X-ray diffraction analysis.  相似文献   

5.
The reaction of [CpCr(CO)3]2 (Cp = η5-C5H5) (1) with 1 mol equivalent of 2,5-dimercapto-1,3,4-thiadiazole (DMcTH2) at ambient temperature led to the isolation of a reddish-brown crystalline solid of CpCr(CO)31-DMcTH) (5) and a green solid of CpCr(CO)3H (2) in yields of ca. 28% and 30%, respectively, along with some [CpCr(CO)2]2 (3) and [CpCr(CO)2]2S (4). The reaction of 1 with 1 mol equivalent of vinylene trithiocarbonate (SCS(CH)2S) (VTTC) at 90 °C led to the isolation of a red crystalline solid of CpCr(CO)22-SCHSC2H2) (6) in ca. 15% yield while the reaction of 1 with isopropylxanthic disulfide ((CH3)2CHOCS2)2 resulted in the formation of CpCr(CO)22-S2COCH(CH3)2) (8) in ca. 80% yield. The complexes 5, 6 and 8 have been determined by single crystal X-ray diffraction analysis.  相似文献   

6.
The dimetallacyclopentenone complexes [Fe2Cp2(CO)(μ−CO){μ−η13−CαHCβ(R)C(O)}] (R = CH2OH, 1a; R = CMe2OH, 1b; R = Ph, 1c) were prepared by photolytic reaction of [Fe2Cp2(CO)4] with alkyne according to the literature procedure. The X-ray and the electrochemical characterization of 1c are presented. The μ-allenyl compound [Fe2Cp2(CO)2(μ−CO){μ−η12α,β−CαHCβCMe2][BF4] ([2][BF4]), obtained by reaction of 1b with HBF4, underwent monoelectron reduction to give a radical species which was detected by EPR at room temperature. The EPR signal has been assigned to [Fe2Cp2(CO)2(μ−CO){μ−η12α,β-CαHCβCMe2}], [2]. The molecular structures of [2]+ and [2] were optimized by DFT calculations. The unpaired electron in [2] is localized mainly at the metal centers and, coherently, [2] does not undergo carbon-carbon dimerization, by contrast with what previously observed for the μ-vinyl radical complex [Fe2Cp2(CO)2(μ−CO){μ−η12-CHCH(Ph)}], [3]. Electron spin density distributions similar to the one of [2] were found for the μ-allenyl radical complexes [Fe2Cp2(CO)2(μ-CO){μ-η12α,β-CαHCβC(R1)(R2)}] (R1 = R2 = H, [4]; R1 = H, R2 = Ph, [5]; R1 = R2 = Ph, [6]).  相似文献   

7.
Reactions of Ru3(CO)12 with diphosphazane monoselenides Ph2PN(R)P(Se)Ph2 [R = (S)-∗CHMePh (L4), R = CHMe2 (L5)] yield mainly the selenium bicapped tetraruthenium clusters [Ru44-Se)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] (1, 3). The selenium monocapped triruthenium cluster [Ru33-Se)(μsb-CO)(CO)72-P,P-Ph2PN((S)-∗CHMePh)PPh2}] (2) is obtained only in the case of L4. An analogous reaction of the diphosphazane monosulfide (PhO)2PN(Me)P(S)(OPh)2 (L6) that bears a strong π-acceptor phosphorus shows a different reactivity pattern to yield the triruthenium clusters, [Ru33-S)(μ3-CO)(CO)7{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (9) (single sulfur transfer product) and [Ru33-S)2(CO)52-P,P-(PhO)2PN(Me)P(OPh)2}{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (10) (double sulfur transfer product). The reactions of diphosphazane dichalcogenides with Ru3(CO)12 yield the chalcogen bicapped tetraruthenium clusters [Ru44-E)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] [R = (S)-∗CHMePh, E = S (6); R = CHMe2, E = S (7); R = CHMe2, E = Se (3)]. Such a tetraruthenium cluster [Ru44-S)2(μ- CO)(CO)8{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (11) is also obtained in small quantities during crystallization of cluster 9. The dynamic behavior of cluster 10 in solution is probed by NMR studies. The structural data for clusters 7, 9, 10 and 11 are compared and discussed.  相似文献   

8.
The reaction of [CpMn(CO)(NO)]2 (I) with an equimolar amount of tin dichloride in THF at room temperature gave the product of tin insertion into the Mn-Mn bond, the carbonyl nitrosyl complex [CpMn(CO)(NO)]2SnCl2 (II). The same complex was formed on treatment of CpMn(CO)(NO)SnCl3 with sodium borohydride. Treatment of I with an excess of anhydrous tin dichloride under the same conditions gave the trinitrosyl complex Cp2Mn2(NO)(μ-NO)2SnCl3 (III). According to X-ray diffraction, II contains a Mn-Sn-Mn chain with highly shortened Mn-Sn bonds (2.5570(2) and 2.5754(2) Å). Compound III contains a Mn-Mn-Sn chain (Mn-Mn, 2.5358(10); Mn-Sn, 2.5604(8) Å) with the Mn-Mn bond supplemented by two nitrosyl bridges and one terminal NO group.  相似文献   

9.
Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)-H bond of the ligand, bridges Re-Re bond opposite the thiazolide ligand in compounds 1-4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1-4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1-5 are reported.  相似文献   

10.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

11.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

12.
A reaction of CpMn(CO)(NO)Sn(C=CPh)3 (I) with [Cp′Mo(CO)2]2 (Cp′ = MeC5H4) gave CpMn(CO)(NO)Sn(C=CPh)3[Cp′Mo(CO)2]2 (II) as dark red prismatic crystals. The molecular structure of complex II was determined by X-ray diffraction study. Complex II contains the Mo-Mo bond (2.9799(5) Å), which is perpendicular to the coordinated C=C bond. The latter is longer (1.371(5) Å) than free acetylenide fragments (1.190(5) and 1.198(5) Å). In addition, the angle Sn-C=C for the coordinated C=C bond is smaller (134.1(3)°) than that in free fragments (173.5(4)° and 171.9(4)°). The Mn-Sn bond length in complex II (2.5662(7) Å) is close to that in complexI (2.5328(17) Å) and is much shorter than the sum of the corresponding covalent radii (2.78 Å). The Sn-C bond (2.108(4) Å) in the acetylenide fragment π-bound to two Mo atoms (average Mo-C, 2.19 Å), as well as the other Sn-C bonds (2.119(4) and 2.135(4) Å), remains virtually the same as in complex I (average 2.105 Å).  相似文献   

13.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

14.
Reaction of Ph2PCC(CH2)5CCPh2 with Os3(CO)10(NCMe)2 affords Os3(CO)10(μ,η2-(Ph2P)2C9H10) (1) and the double cluster [Os3(CO)10]2(μ,η2- (Ph2P)2C9H10)2 (2), through coordination of the phosphine groups. Thermolysis of 1 in toluene generates Os3(CO)7(μ-PPh2)(μ35-Ph2PC9H10) (3) and Os3(CO)8(μ-PPh2)(μ36-Ph2P(C9H10)CO) (4). The molecular structures of 1, 3, and 4 have been determined by an X-ray diffraction study. Both 3 and 4 contain a bridging phosphido group and a carbocycle connected to an osmacyclopentadienyl ring, which are apparently derived from C-P bond activation and C-C bond rearrangement of the dpndy ligand governed by the triosmium clusters.  相似文献   

15.
The title compounds were prepared in good yield by treatment of Re(CO)5Cl or [Re(CO)3(H2O)3]Br with sodium dimethyldithiocarbamate hydrate (NaS2CNMe2·H2O) and a neutral ligand yielding eight Re(CO)3(S2CNMe2)(L) derivatives: L = NH31, pyridine (py) 2, imidazole (im) 3, pyrazole (pz) 4, triphenylphospine (PPh3) 5, 1,3,5-triaza-7-phosphaadamantane (PTA) 6, t-butyl isocyanide (t-BuNC) 7, and cyclohexyl isocyanide (CyNC) 8. The resulting new complexes were characterized by 1H and 13C NMR and infrared spectroscopy. Each was also structurally elucidated by X-ray crystallography. General structural features in all eight compounds were similar. The orientation of the three single-faced ligands, py, im and pz, demonstrates an interaction with the filled π orbital of the dithiocarbamate. Compounds were tested for stability under conditions that mimic physiological conditions; 1-4 quickly decomposed, 7 and 8 decomposed over 24 h while 5 and 6 were stable.  相似文献   

16.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

17.
The first examples of bridging tin- and germanium-substituted metallocarboxylate ligands have been obtained from the reactions of Ph3SnOH and Ph3GeOH with Os3(CO)12 under basic conditions. Two products: Os3(CO)10(μ-η2-O=COSnPh3)(μ-OMe), 1 (18% yield) and Os3(CO)10(μ-OMe)(μ-OH), 2 (6.9% yield) were obtained from the reaction of Ph3SnOH with Os3(CO)12 in the presence of [Bu4N]OH in methanol solvent. The compound Os3(CO)10(μ-η2-O=COGePh3)(μ-OMe), 3 (7.3% yield) was prepared similarly by using Ph3GeOH in place of Ph3SnOH. Each of the products 1-3 were characterized structurally by single-crystal X-ray diffraction analysis. Compounds 1 and 3 each contain an μ-η2-O=COMPh3, M = Sn or Ge ligand bridging a pair of osmium atoms in a triosmium carbonyl cluster complex.  相似文献   

18.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

19.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

20.
Thermolysis of the mixed-metal cluster PhCCo2MoCp(CO)8 (1) with the diphosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in CH2Cl2 leads to the sequential formation of the phosphido-bridged cluster Co2MoCp(CO)5221-C(Ph)CC(PPh2)C(O)OC(O)](μ-PPh2) (3) and the bis(phosphido)-bridged cluster Co2MoCp(CO)4311-C(Ph)CCC(O)OC(O)](μ-PPh2)2 (4). 3 and 4 have been isolated and characterized in solution by IR and NMR (1H, 13C, and 31P) spectroscopies, and the solid-state structures have been established by X-ray diffraction analyses. Both clusters contain 48e- and exhibit triangular Co2Mo cores. The structure of 3 reveals the presence of a phosphido moiety that bridges the Co-Co vector and a six-electron μ221-C(Ph)CC(PPh2)C(O)OC(O) ligand that caps one of the Co2Mo faces. The X-ray structure of 4 confirms that the five-electron η311- C(Ph)CCC(O)OC(O) ligand is σ-bound to the two cobalt centers in an η1 fashion and π-coordinated to the molybdenum center through a traditional η3-allylic interaction. The reaction between PhCCo2MoCp(CO)8 and the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) proceeds similarly, furnishing the phosphido-bridged cluster Co2MoCp(CO)5221-C(Ph)CC(PPh2)C(O)OCH(OMe)](μ-PPh2) (6), followed by conversion to Co2MoCp(CO)4311-C(Ph)CCC(O)OCH(OMe)](μ-PPh2)2 (7). The identities of clusters 6 and 7 have been ascertained by solution spectroscopic methods and X-ray crystallography. The overall molecular structure of cluster 6 is similar to that of cluster 3, except that the P-C(furanone ring) bond cleavage occurs with high regioselectivity and high diastereoselectivity. The cleavage of the remaining P-C(furanone ring) bond in cluster 6 gives rise to the bis(phosphido)-bridged cluster 7, whose structure is discussed relative to its bma-derived analogue 4. The diastereoselectivity that accompanies the formation of 6 and 7 is discussed relative to steric effects within the Co2Mo polyhedron. The cyclic voltammetric properties of cluster 3 have been examined, with three well-defined one-electron processes for the 0/+1, 0/−1, −1/−2 redox couples found. The composition of the HOMO and LUMO in 3 was established by extended Hückel MO calculations, with the data discussed relative to the parent tetrahedrane cluster 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号