首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

2.
The new compounds {(η-C5H5WX)[μ-(σ, η-C5H4)]}2, where X = Cl, Br or I are described. The known hydride X = H, protonates and rearranges giving the new cation {(η-C5H5)WH}2, (μ-H)[μ-C5(η-C5H4-η-C5H4)]+.  相似文献   

3.
The new methylidene trinickel cluster complexes, [RCNi35-C5H53] (R  CMe3 or SiMe3) and [Me3SiCNi35-C5H5)2(η5-C5H4CH2SiMe3)] have been isolated in low yield from reactions between nickelocene and the corresponding alkyllithium reagents, RCH2Li. The compounds [RCNi35-C5H5)3] (R  Ph, CMe3 or SiMe3) have also been obtained by treatment of the σ-alkylnickel complexes [(η5-C5H5)Ni(CH2R)(PPh3)] with n-BuLi in the presence of an excess of nickelocene, but under similar conditions [(η5-C5H5)Ni(CH2C1OH7-2)-(PPh3)] (where C1OH7-2  2-naphthyl) failed to give [2-C1OH7CNi35-C5H5)3]. The attempted synthesis of [(η5-C5H5)Ni(CH2CCH)(PPh3)] from [(η5-C5H5)-NiBr(PPh3)] and CHCCH2MgBr gave only [(η5-C5H5)Ni(CCMe)(PPh3)] by an unusual rearrangement reaction.  相似文献   

4.
Protonation of the closely related salts [N(PPh3)2][W(CC6H4Me-4)(CO)2(η-1,2-C2B9H9R2] (Ia, R = H; Ib, R = Me) affords structurally different products: [N(PPh3)2][W2(μ-H){μ-C2(C6H4Me-4)2}(CO)4(η-1,2-C2B9H11)2] (III) and [W(CC6H4Me-4)(CO)2(η-1,2-C2B9H10Me2)] (V), respectively. Treatment of Ib, with PMe3, gives the ketenyl complex [N(PPh3)2][W(CO)(PMe3){η2-C(C6H4Me-4)C(O)}(η-1,2-C2B9H9Me2)] (VI). Protonation and methylation of the latter yields the alkyne-tungsten compounds [W(CO)(PMe3){η-C2(OR′)(C6H4Me-4)}(η-1,2-C2B9H9Me2)] (IXa, R′ = H; IXb, R′ = Me).  相似文献   

5.
The phosphorus ylids Ph3PCHR (R = Me, Et, Prn, Pri, Bun, Cl, and OMe), and the ylids Ph3AsCH2, Me2SCH2, and Me2S(O)CH2 react with [Ni(η5-C5H5)Br(PPh3)] at room temperature to give the complexes [Ni(Ph3PCHR)(η5-C5H5(PPh3)] Br, [Ni(Ph3AsCH2)(η5-C5H5)(PPh3)]Br, [Ni(Me2SCH2)(η5-C5H5)(PPh3)]Br and [Ni{Me2S(O)CH2} (η5-C5H5)(PPh3)]Br, respectively. These are readily converted into the corresponding hexafluorophosphate salts on reaction with ammonium hexafluorophosphate. Under more forcing conditions the stabilised ylid Ph3PCHCOPh gives a product believed to be the complex [Ni(Ph3PCHCOPh)25-C5H5)]Br, isolated and characterised as its PF6? salt.  相似文献   

6.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

7.
Reactions of the phosphido-bridged complexes [Co2W(μ-H)(μ3-CC6H4Me-4)(μ-PR2)(CO)6(η-C5H5)] (R = Ph or Et) with PR2H (R = Ph or Et) or RCCR (R = Me or Et) are dominated by processes involving facile PC, CC and CH bond formation. The X-ray structures of the complexes [Co2W(μ-PEt2)3(CO)5(η-C5H5)], [Co2W{μ3-C(R)C(Et)C(Et)C(O)}(μ-CO)(CO)4(PPh2{C(Et)CHEt})(η-C5H5)], and [CoW{μ-C(R)C(Et)C(Et)C(OH)}(CO)4(η-C5H5)] (R = C6H4Me-4) have been determined.  相似文献   

8.
Insertion of CO or p-TolNC into a ZrC bond of [Zr(η-C5H5).(R)R′] under ambient conditions in C6H6 leads to the stable η2-acyl- or η2-iminoacyl-complex [Zr(η-C5H5)22-C(X)R}R′] (X = O or NTol-p); with [Zr(η-C5H5)2{CH(SiMe3)2}Me] as substrate there is exclusive preference for scission of the more hindered ZrC bond.  相似文献   

9.
Reaction of [MoX(CO)2(η-C3H5)(MeCN)2] with the arsines Ph2AsCH2CH2AsPh2 (dae) and Ph2AsCH2AsPh2 (dam) yields complexes of stoichiometry [MoX(CO)2(η-C3H5)dae] (where X = Cl, Br or I) and [MoX(CO)2(η-C3H5)]2dam (where X = Cl or Br). The former are isomorphous with the known Ph2PCH2CH2PPH2 complexes, whereas the latter probably contain halogen and dam bridges. Under forcing conditions the corresponding ditertiary phosphines form the molybdenum(0) derivatives cis-Mo(CO)2(Ph2P(CH2)nPPh2]2 (where n = 1 or 2).  相似文献   

10.
Transition Metal Substituted Acylphosphanes and Phosphaalkenes. 17. Synthesis and Structure of the μ-Isophosphaalkyne Complexes [(η5-C5H5)2(CO)2Fe2(μ-CO)(μ-C?PC6H2R3)] (R = Me, iPr, tBu) . Condensation of (η5-C5H5)2(CO)2Fe2(μ-CO)(μ-CSMe)}+SO3CF3? ( 6 ) with 2,4,6-R3C6H2PH(SiMe3) ( 7 ) ( a : R = Me, b : R = iPr, c : R = tBu) affords the complexes (η5-C5H5)2(CO)2Fe2(μ-CO)(η-C?PC6H2R3-2,4,6) ( 9 a–c ) with edge-bridging isophosphaalkyne ligands as confirmed by the x-ray structure analysis of 9 a .  相似文献   

11.
The neutral complexes (η5-C5H5NiXL (X = Cl, L = PPh3 (I); L = PCy3 (II); X = Br, L = PPh3 (III); L = PCy3 (IV); X = I, L = PPh3 (V); L = PCy3 (VI)) have been obtained by treating NiX2L2 with thallium cyclopentadienide. The same reaction in the presence of TlBF4 gives cationic derivatives [(η5-C5H5)NiL2]BF4 (L = 2PPh2Me (VII); L = dppe (VIII)), whereas mononuclear complexes containing two different ligands (L2 = PPh3 + PCy3 (IX)) or dinuclear [(η5-C5H5)Ni(PPh3)]2dppe(BF4)2 (X) are obtained from the reaction of III with TlBF4 in the presence of a different ligand. Reduction of cationic complexes with Na/Hg gives very unstable nickel(I) derivatives (η5-C5H5)NiL2, which could not be isolated purely. Similar reduction of neutral complexes under CO gives a mixture of decomposition products containing [(η5-C5H5)Ni(CO)]2 and nickel(o) carbonyls, whereas in the presence of acetylenes, dinuclear [(η5-C5H5)Ni]2(RCCR′) (R = R′ = Ph; R = Ph, R′ = H) are obtained.  相似文献   

12.
The reactivity of [Ru3Mo(μ42-CC)(μ-CO)3(CO)2(η-C5H4R)3(η-C5H5)] (R = H; Me) have been investigated, initially to elucidate the nature of the starting material, and, latterly, to define the reactivity of an interesting ethane-1,2-bis(ylidyne) species. While the mixed RuMo clusters were unreactive towards simple electrophiles and carbonyl substitution by phosphine ligands they did react with atmospheric oxygen or carbon monoxide to give substantially different products. In all instances oxygen was incorporated either at the metal centre or at the C2 fragment. High-pressure carbonylations yielded [Ru3(μ-CO)3(η-C5H5)33-C-C(O)O{Ru(CO)2(η-C5H5)})] and [{Ru2(μ-CO)(CO)2(η-C5H4Me)2}(μ42-CC){Ru(CO)(η-C5H4Me)Mo(η-C5H5)(=O)(μ-O)}], an ethane-1,2-bis(ylidene) complex, this exemplifying a relatively rare raft geometry which further reacted with Cl2CCCl2 to give [Mo34-C2(Ru(CO)2(η-C5H4Me))(CO)(μ-CO)(η-C5H5)3(Cl)2] having a similar geometry and undergone halogenation. In order to extend the extant examples of these raft clusters we explored the reaction of [{Ru(CO)2(η-C5H4R)2}2(μ-C2)] with [{Ru(CO)2(η-C5H5)2}2] to provide a rational synthetic pathway leading to very reactive [Ru(μ42-CC)(μ2-CO)2(CO)4(η-C5H4Me)2(η-C5H4R)2] rafts.  相似文献   

13.
《Polyhedron》1988,7(18):1719-1724
Reaction of [MoX(CO2(NCMe)23-C3H4R)] in CH2Cl2 at room temperature with an equimolar quantity of (R′R″)CNNHCONH2 gave high yields of the bidentate coordinated semicarbazone complexes [MoX(CO)2{(R′R″)CNNHCONH2}(η3-C3H4R)] (X = Cl, Br or I; R = H or Me; R′,R″ = H or Me and Me, Et, nPr or Ph) via displacement of two acetonitrile ligands.  相似文献   

14.
Reaction of [(η-C5H5)NiCo3(CO)9] (5) with 1,3,5,7-cyclooctatetraene or 1,4-(SiMe3)2C8H6, respectively, yields the complexes [Co2Ni(CO)638-C8H6R2)] (R=H, SiMe3) (7a, b). Dramatic modifications of the tetrametallic cluster core and the ligand sphere of 5 to give the trinuclear complex 7 are driven by the preference of the cyclopolyenes for facial (μ38) coordination. The title complexes are the first examples of facial cyclooctatetraene coordination to a heterometallic (Co2Ni) triangle.  相似文献   

15.
The reduction of Nb(η5-C5H4SiMe3)2Cl2 (I) with Na/Hg in a 1/1 molar ratio gives Nb(η5-C5H4SiMe3)2Cl (II). Reactions of II with some cumulenes give the corresponding niobocene derivatives with the functional groups anchored to the bis(trimethylsilylcyclopentadienyl)niobium unit, Nb(η5-C5H4SiMe3)2Cl(CS2), Nb(η5-C5H4SiMe3)2Cl(PhNCX) (X = O or S) and Nb(η3-C5H4SiMe3)2Cl(CyCN- Cy). The imido compound Nb(η5-C5H4SiMe3)2Cl(NPh) has been prepared. The chemical properties and structural features of the compounds are described.  相似文献   

16.
The reaction of the tetramethylcyclopentadiene-silyl substituted derivative C5Me4(SiMe3)(SiMe2Cl) with MCl4 afforded the trichloro mono-tetramethylcyclopentadienyl complexes M(η5-C5Me4SiMe2Cl)Cl3 [M=Ti (1), Zr (2)] with selective elimination of SiMe3Cl. Compound 1 reacts with deoxygenated water in methylene chloride, with the evolution of HCl, to give the dinuclear titanium compound {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl2}2 (3), which was converted into the μ-oxo complex {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl}2(μ-O) (4) by a further hydrolysis reaction which occurred when a solution of 3 in toluene was refluxed for a long period of time in the air. Depending on the size of the alkyl ligand, reactions of the mononuclear compound 1 with an appropriate alkylating reagent rendered the peralkylated Ti(η5-C5Me4SiMe2R)R3 [R=Me (5), CH2Ph (6)] or partially alkylated {Ti[(η5-C5Me4SiMe2(CH2SiMe3)]Cl(CH2SiMe3)2} (7) compounds by a salt metathesis route. Attempts to synthesise a partially methylated or benzylated complex were unsuccessful. Treatment of the dinuclear compound 3 with four equivalents of MgClMe yielded the tetramethyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Me2}2 (8), while the same reaction carried out with MgCl(CH2Ph) or Mg(CH2Ph)2·2THF gave the chloro-benzyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl(CH2Ph)}2 (9) as an equimolar mixture of diastereomers, regardless of the molar ratio of the alkylating reagent used. All of the new compounds were characterised by elemental analysis and NMR spectroscopy.  相似文献   

17.
The complex trans-[RuPy4(CN)2] cleaves chloride bridges in the binuclear rhodium(i) and palladium(ii) complexes [Rh(CO)2Cl]2, [Rh(η4-C8H12)Cl]2, [(η4-C8H12)Rh(μ-Cl)2Rh(CO)2], [Pd(η3-C3H5)Cl]2, and [(η3-C3H5)Pd(μ-Cl)2Rh(CO)2] to form heterometallic triad complexes [(CO)2ClRh(NC)RuPy4(CN)RhCl(CO)2] (1), [(η4-C8H12)ClRh(NC)RuPy4(CN)RhCl-(η4-C8H12)] (2), [(CO)2ClRh(NC)RuPy4(CN)RhCl(η4-C8H12)] (3), [(η3-C3H5)ClPd(NC)-Ru(Py)4(CN)PdCl(η3-C3H5)] (4), and [(CO)2ClRh(NC)Ru(Py)4(CN)PdCl(η3-C3H5)] (5), respectively. In solutions, complex 3 coexists with equilibrium amounts of compounds 1 and 2; complex 5 is in the equilibrium with compounds 4 and 1. In both cases, the ratio of concentrations is close to binomial. Complexes 2 and 5 treated with [Rh(CO)2Cl]2 are converted into 1 with the simultaneous formation of [Rh(η4-C8H12)Cl]2 and [Pd(η3-C3H5)Cl]2, respectively. The δH and δC values for the ligands η4-C8H12, η3-C3H5, and CO are sensitive to the nature of the remote triad unit. The ligand effects are shown to be transmitted along the chain L′-M′-(NC)-Ru-(CN)-M″-L″.  相似文献   

18.
The metallation of the η5-C5H5(CO)2Fe-η15-C5H4Mn(CO)3 complex with BunLi (THF, ?78 °C) followed by the treatment of the lithium derivative with Ph2PCl afforded the η5-Ph2PC5H4(CO)2Fe-η15-C5H4Mn(CO)3 complex. The reaction of the latter with η5-C5H5(CO)3WCl in the presence of Me3NO produced the trinuclear complex η5-C5H5Cl(CO)2W-η15-(Ph2P)C5H4(CO)2Fe-η15-C5H4Mn(CO)3. The structure of the latter complex was established by IR, UV, and 1H and 31P NMR spectroscopy and X-ray diffraction. The reaction of MeSiCl3 with three equivalents of LiC5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3 gave the hexanuclear complex MeSi[C5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3]3.  相似文献   

19.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

20.
Five binuclear half-sandwich cobalt complexes, [(η5-C5H4)Co(CO)I2]2SiMe2 (3), [(η5-C5H4)Co(S2C2B10H10)]2SiMe2 (4), [(η5-C5H4)]2Co22-S2C2B10H10)SiMe2 (5), [(η5-C5H3)CoI2](μ-I)[(η5-C5H3)Co(CO)I](SiMe2)2 (8), [(η5-C5H3)Co(S2C2B10H10)]2(SiMe2)2 (9), were successfully synthesized in moderate yield by the reactions of corresponding ligands, (C5H5)2SiMe2 (1) and (C5H4)2(SiMe2)2 (6), respectively. The molecular structures of 3, 5, 6, 8 and 9 was determined by X-ray crystallographic analysis, which distinctly depict various molecular structures containing the Cp rings and the metal centers with halide or 1,2-dicarba-closo-dodecaborane-1,2-dithiolato ligands. For the (η5-C5H4)2SiMe2 complexes, coordination of the fragments CpCo favors a exo conformation. With the rigid structure of the di-bridged ligand (C5H4)2(SiMe2)2, only cis isomers of the corresponding (η5-C5H3)2(Si2Me2)2 complexes are formed. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号