首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magneto-optical spectra of Co1+xFe2?xO4 show with increasing Co3+ content an increasing intensity of the 4A2 ? 4T1(F) and 4A2 ? 4T1(P) transition of Co2+ at 0.8 and 2.0 eV. A decrease in the Co2+-Fe3+ charge transfer transitions on octahedral sites is found. In the optical spectra a strong increase in optical absorption is found with dominant transitions at 0.8, 1.6 and 2.6 eV due to Co3+ crystal field transitions on octahedral sites and a Co2+-Co3+ charge transfer. Conversion Electron Mössbauer Spectroscopy has been used to determine the cation distribution in the surface layer of the samples. The results indicate a shift of Co2+ from octahedral to tetrahedral sites when Co3+ is substituted in CoFe2O4. This results in enhanced optical absorption, enhanced magneto-optical effects and a lower Curie temperature.  相似文献   

2.
Absorption measurements of single Zn3As2 crystals were made at temperatures 5, 80 and 300 K. Free-carrier absorption is interpreted in the simple classical model. Interband absorption shows contributions from Urbach-like excitations. The direct optical gap has been estimated as 0.99 eV at 300 K, 1.09 eV at 80 K and 1.11 eV at 5 K. The linear dependence of band-gap on temperature was found in the range 80–300 K with dEg/dT = ? 4.55 × 10?4eVK?1.  相似文献   

3.
Optical absorption spectra of single crystals and powder specimens of WxMo1-xO3 reveal fundamental absorption edges with gap energies of 2.77 eV (WO3) and 3.05 eV (MoO3). A continuous shift of the absorption edge and a simultanous appearance of absorption tails was found for ternary oxides. A theoretical model is proposed, based on the Anderson-localisation model with potential fluctuations due to tungsten-molybdenum disorder.  相似文献   

4.
The theory of optical absorption due to transitions between a valence band and a hydrogen-like local level associated with a conduction band is modified to permit an arbitrary power-law dependence of energy on the magnitude of the wave-vector of carriers in the valence band. The observed absorption for photon energies below 1.6 eV in the ferromagnetic semiconductor CdCr2Se4 is discussed in terms of a combination of two types of terms. The first type of absorption is due to transitions to a local level from a band with two branches, in each of which there is an energy region with a width of 0.28 eV or more beginning 0.10–0.16 eV from the band edge, in which the energy measured from some origin near but not necessarily equal to the band-edge is approximately proportional to (wave-vector)(13). The second type of absorption has a dependence on photon energy ?ω of the form (?ω ? E3)2, where E3 is a threshold energy probably connected with indirect transitions between bands as suggested by Sakai, Sugano and Okabe. After constraints on parameters appearing in the theory are imposed by use of results of these authors and of Shepherd, it is found that curves of Harbeke and Lehmann on optical absorption in CdCr2Se4 at 4.2, 78, 130 and 298 K in the photon-energy range 1.14–1.42 eV can be fitted to a mean accuracy of 3%, using an average of 3.75 adjustable parameters for each curve. The strength of the indirect band-to-band absorption does not have the temperature dependence expected for phonon-assisted indirect band-to-band transitions, but can be described by a term independent of temperature plus another term proportional to the square of the deviation of the magnetization from saturation. The fitting of the absorption curves requires that the ratio of the widths of the two branches of the bands varies from about 1.6 at low temperatures to 1.35 at 298 K and that the total width of the bands involved is less than 1 eV.  相似文献   

5.
A high-quality ZnNb2O6 single-crystal grown by optical floating zone method has been used as a research prototype to analyze the optoelectronic parameters by measuring the absorption coefficient and transmittance spectra along the b-axis from 200 nm to 1000 nm at room temperature. The optical interband transitions of ZnNb2O6 have been determined as a direct transition with a band gap of 3.84 eV. The refractive index, extinction coefficient, and real and imaginary parts of the complex dielectric constants as functions of the wavelength for ZnNb2O6 crystal are obtained from the measured absorption coefficients and transmittance spectra. In the Urbach tail of 3.16–3.60 eV, the validity of the Cauchy–Sellmeier equation has also been evaluated. Using the single effective oscillator model, the oscillator energy Eo is found to be 4.77 eV. The dispersion energy Ed is 26.88 eV and ZnNb2O6 crystal takes an ionic value.  相似文献   

6.
The photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals have been investigated as a function of temperature and external electric field. It has been observed that the exciton peaks shift to lower energy in GaSe0.9Te0.1 alloy crystals compared to GaSe crystals. The long wavelength tails of interband photoluminescence, photoconductivity and absorption spectra are determined by the free exciton states and show an Urbach-Martienssen-type dependence to the photon energy. The maxima of the extrinsic photoluminescence and photoconductivity spectra were found to be determined by the acceptor centers with an energy of EA=EV+0.19 eV formed by the polytypism and defects complexes that include Se and Te anions.  相似文献   

7.
The photoconductivity spectra of ferromagnetic semiconductor HgCr2Se4 single crystals in the intrinsic transition region were measured at a number of fixed temperatures covering Tc = 106 K. The photoconductivity edge, 0.88 eV, at room temperature shifted to 0.35 eV at 52 K.The temperature dependence of the photoconductivity edge is in good correspondence with that of the absorption edge, and is explained qualitatively well with the calculated spin correlation functions in spinels.From the theoretical calculations by Kambara et al., the lowest transition associated with the photoconduction in HgCr2Se4 was interpreted to be the electronic transition from the highest d? to the lowest A [dγ-p] states for up-spin at X point. The many doby effects should be taken into account.  相似文献   

8.
Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz. The as-obtained films were characterized by X – ray diffraction (XRD), transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). XRD and TEM results showed that the layer has a chalcopyrite-type structure, predominantly oriented along (112) planes, with lattice parameters a?=?0.61?nm and c?=?1.22?nm. The optical properties in the near - infrared and visible range 600–2400?nm have been studied. The analysis of absorption coefficient yielded an energy gap value of 1.27?eV. Photoluminescence analysis of as-grown sample shows two main emission peaks located at 0.87 and 1.19?eV at 4?K.  相似文献   

9.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

10.
The fundamental optical properties in the paramagnetic phase of α-RuCl3 are studied at different temperatures in the photon energy interval 0.03 to 10 eV. Infrared reflectivity spectra show a transverse optical frequency at 0.038 eV (32 μm) for an Eu mode (Ec, in plane atomic displacements). The absorption spectra in the energy range 0.2 to 1 eV reveal three bands (0.29, 0.51, 0.71 eV) attributed to d-d electronic transitions. Reflectance and thermo-reflectance measurements indicate the onset of the charge-transfer transitions at 1.1 eV and show structure at 1.85, 2.55, 3.05, 4.5 eV. The marked reflectivity peak at 5.2 eV is probably related to p(Cl) → s(Ru) band-to-band transitions.  相似文献   

11.
Optical absorption spectra of polycrystalline and amorphous CuInSe2 thin films were measured at room temperature in the photon energy range from 0.8 to 2.1 eV. In amorphous CuInSe2 the absorption coefficient follows the relation α(hv) = A(hv?E0)/hv characteristic of optical transitions between extended states in both the valence and conduction band. The optical gap of E0 = 1.38 ± 0.01 eV is larger than the fundamental gap energy of Eg = 1.01 ± 0.01 eV in crystalline CuInSe2. A comparison of the results for CuInSe2 with those for ZnSe is given.  相似文献   

12.
Thin films of In-doped Ge-S in the form of Ge35In8S57 with different film thickness were deposited using an evaporation method. The X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature for these films. Some optical constants were calculated at a thickness of 150, 300, 450 and 900?nm and annealing temperature of 373, 413, 437 and 513?K. Our optical observations show that the mechanism of the optical transition obeys the indirect transition. It was found that the energy gap, Eg, decreases from 2.44 to 2.20?eV with expanding the thickness of the film from 150 to 900?nm. On the other hand, it was found that Eg increases with annealing temperature from 373 to 513?K. The increment in the band gap can be attributed to the gradual annealing out of the unsaturated bonds delivering a decreasing the density of localized states in the band structure. Using the single oscillator model, the dispersion of the refractive index is described. The dispersion constants of these films were calculated with different both thickness and annealing temperatures. Additionally, both of nonlinear susceptibility, χ(3) and nonlinear refractive index, n2 were calculated.  相似文献   

13.
Electrical resistivity, thermoelectric power and current noise were measured on Li-doped MnO single crystals in the temperature range from 300 to 1000 K. Below 700 K the crystals are p-type and the activation energy of the resistivity is 0.75 eV. Around 700 K the activation energy changes from 0.75 to 1.25 eV owing to a change from p- to n-type conduction. The depth of the Li acceptor is found to be 0.65 eV. From resistivity and thermoelectric power data it is concluded that the bandgap in first approximation can be written as Es(T) = Eo ? γT between 750 and 1000 K, with Eo = 1.9 eV and γ = 6 × 10?4 eV/K. The current noise spectra show 1? noise. The magnitude of the 1? noise is strongly temperature dependent. From the noise data it is deduced that Eo = 2.2 eV and γ = 10?3 eV/K in the temperature range 430–700 K.  相似文献   

14.
Chromium thio-phosphate, CrPS4, has a layered structure based on hexagonally close packed sulfur layers. Magnetic susceptibility measurements indicated an antiferromagnetic ordering perpendicular to the C axis and the presence of trivalent chromium in the paramagnetic region. Optical transmission spectra showed the fundamental absorption edge to occur at 2.4 eV. Using n-butyl lithium techniques, it was found that CrPS4 can readily accomodate lithium. This insertion is not allowed by any parameter change in the host structure nor reduction of the Cr3+ magnetic moment. Lithium NMR measurements gave a rather high (0.31 eV) energy of activation for lithium movement and use of CrPS4 as a cathode against a lithium anode showed a sharp drop in potential.  相似文献   

15.
The sum of the squares of the electronic transition moments, Σ|Re|2, for the E1Σ+ ?X1Σ+ band system of SiO has been determined from absorption measurements conducted in the reflected-shock region of a shock tube. The test gas was produced by shock-heating a mixture of SiCl4, N2O and Ar, and the spectra were recorded photographically in the 150–230 nm wavelength range. The values of the Σ|Re|2 were determined by comparing the measured absorption spectra with those produced by a line-be-line synthetic spectrum calculation. The value of the Σ|Re|2 so deduced at an r-centroid value of 3.0 Bohr was 0.86±0.10 atomic units.  相似文献   

16.
Optical absorption spectra near the absorption edge of the system HgxZn1?xCr2Se4 have been measured for various compositions in the temperature range between room and liquid helium temperatures. A correlation between the optical properties and magnetic structures becomes obvious from the measurements of the energy at the absorption edge and the change in the magnetic property with composition variation, and by measuring the optical absorption spectra under the applied magnetic field.  相似文献   

17.
In this work by applying first principles calculations structural, electronic and optical properties of Ca3Bi2 compound in hexagonal and cubic phases are studied within the framework of the density functional theory using the full potential linearized augmented plane wave (FP-LAPW) approach. According to our study band gap for Ca3Bi2 in hexagonal phase are 0.47, 0.96 and 1?eV within the PBE-GGA, EV-GGA and mBJ-GGA, respectively. The corresponding values for cubic phase are 1.24, 2.08 and 2.14?eV, respectively. The effects of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths and anti-symmetry gap are investigated. It is found that the hydrostatic pressure increases the band widths of all bands below the Fermi energy while it decreases the band gap and the anti-symmetry gap. In our calculations, the dielectric tensor is derived within the random phase approximation (RPA). The first absorption peak in imaginary part of dielectric function for both phases is located in the energy range 2.0–2.5?eV which are beneficial to practical applications in optoelectronic devices in the visible spectral range. For instance, hexagonal phase of Ca3Bi2 with a band gap around 1?eV can be applied for photovoltaic application and cubic phase with a band gap of 2?eV can be used for water splitting application. Moreover, we found the optical spectra of hexagonal phase are anisotropic along E||x and E||z.  相似文献   

18.
IR absorption in p-type melt grown Pb0.97Sn0.03Se crystals is reported. The results for the room temperature absorption coefficient (α) in the wavelength region 2–15 μm are analysed. The indirect absorption edge is found to be at 0.26 eV for this ternary alloy. In the longwavelength region α is found to be proportional to λ2, in agreement with the classical free carrier absorption expression. The conductivity effective mass of holes is found to be 0.067 m0 at 300°K.  相似文献   

19.
The polarization-modulated (PM) magnetoreflection technique has been used to study magnetic ordering effects in CdCr2S4 and EuSe. The energy gap for direct band-band transitions in CdCr2S4 has been measured to be EG = 2.3 eV, and the exchange splitting of the valence band to be about 0.03 eV. Good agreement with thin film absorption measurements is obtained in the temperature dependence of spectral structure, observed at energies less than EG, associated with crystal field and charge transfer transitions. No strongly blue-shifting peak is observed with magnetic order. PM magnetoreflection spectra of the E1 peak of EuSe show a direct manifestation of the spin alignment from the ferrimagnetic to ferromagnetic state of this crystal at 2 K in external fields up to 16 kOe. An attempt is made to explain resonant Raman scattering in EuSe (observed by other workers) in terms of the field-induced shift of one of the polarized E1 reflectivity components into coincidence with the 5145 Å argon-ion laser line.  相似文献   

20.
Electrical conductivity and fundamental absorption spectra of monocrystalline Cu7GeS5I were measured in the temperature ranges 95-370 and 77-373 K, respectively. A rather high electrical conductivity (σt=6.98×10−3Ω−1 cm−1 at 300 K) and low activation energy (ΔEa=0.183 eV) was found. The influence of different types of disordering on the Urbach absorption edge and electron-phonon interaction parameters were calculated, discussed and compared with the same parameters in Cu7GeS5I, Cu6PX5I (X=S,Se) and Ag7GeX5I (X=S,Se) compounds. We have concluded that the P→Ge and Cu→Ag cation substitution results in an increase of the electrical conductivity and a decrease of the activation energy. Besides, P→Ge substitution, results in complete smearing and disappearance of the exciton absorption bands and in blue shift of the Urbach absorption edge, an increase of the edge energy width and an electron-phonon-interaction enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号