首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new lanthanide-radical complexes [{Ln(hfac)3}2(NITPhIM)2] (Ln = Nd (1), Eu (2), Tb (3), Er (4); hfac = hexafluoroacetylacetonate; NITPhIM = 2-[4-(1-imidazole)phenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been prepared and characterized. Single crystal X-ray diffraction analyses reveal that these complexes are isostructural with one-dimensional chain structures. These consist in Ln(hfac)3 units bridged by the paramagnetic ligands by the means of coordination of their nitronyl nitroxide groups and imidazole rings. Interestingly, each Ln ion is either bound to two nitronyl nitroxide groups or to two imidazole units, and the different Ln centers alternate along the chain. Magnetic studies show that complex 3 exhibits a single-chain magnet behavior.  相似文献   

2.
Two complexes of formulas [Zn(Hfac)2(IM-IMH-Bph)] (I) and [Co(Hfac)3](IM-Bph) (II), where IM-Bph = 2,2′-bis(1′-oxyl-4′,4′,5′,5′-tetramethylimidazoline-2′-yl)-bis(2-formylphenyl) ether; Hfac = hexafluoroacetylacetonate, have been synthesized and characterized by single-crystal X-ray diffraction. The X-ray analysis demonstrates that both I and II are mononuclear complexes. In I, each zinc ion is five-coordinated with four oxygen atoms from two Hfac ligands and one oxygen atom from nitroxide. Complex II contains one Co(III) atom with six oxygen atoms from three Hfac ligands and uncoordinated IM-Bph diradical, in which the Co2+ ion and NIT-Bph biradical can undergo the redox reaction.  相似文献   

3.
Two new chelating radical ligands, NITphtrz (4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl-3-oxide) and IMphtrz (4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl), and their cobalt(II) complexes [Co(Hfac)2(NITphtrz)] (I) and [Co(Hfac)2(IMphtrz)] (II) (Hfac = hexafluoroacetylacetonate) have been prepared and characterized by IR, magnetic, and single-crystal X-ray analysis. The magnetic behaviors of the lignad NITphtrz and complex I have been discussed.  相似文献   

4.
Molecular and crystal structures are determined for amino-substituted nitronyl nitroxide 1, the products of its subsequent oxidation, acylation, and reduction: zwitter-ions 3a, 3b and salts K(4b) and K2(4b)(CF3CO2).  相似文献   

5.
Four 3d-4f heterometallic complexes, [CuⅡ LnⅢ (bpt) 2 (NO 3 ) 3 (MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuⅡ 2 LnⅢ 2 (μ-OH) 2 (bpt) 4 Cl 4 (H 2 O) 2 ]·6H 2 O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ -LnⅢ dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {CuⅡ 2 LnⅢ 2 } structures with the Ln(Ⅲ) Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuⅡ-LnⅢ interactions occur in 1 (J CuGd = 0.21 cm-1 ) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = 0.82 cm-1 and J GdGd = 0.065 cm-1 , while dominant ferromagnetic interaction occurs in complex 4.  相似文献   

6.
Two new complexes based on lanthanide ions and nitronyl nitroxide radical, Ln(hfac)3(NITPh-p-Cl)2 (Ln = Gd(1), Nd(2); hfac = hexafluoroacetylacetonate; NITPh-p-Cl = 2-(4′-chlorphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been synthesized and characterized by single-crystal X-ray diffraction. The single-crystal structures show that two complexes have similar structures, which consist of radical-Ln-radical isolated molecules. The Ln(III) ions are eight-coordinated in slightly distorted dodecahedral geometry. NITPh-p-Cl molecules act as monodentate ligands linking two Ln(III) ions through the oxygen atoms of the N-O groups. The magnetic studies show that the spin coupling between the Gd(III) ion and the radicals in the complex 1 is weak ferromagnetic (J = 0.38 cm−1), while complex 2 exhibits antiferromagnetic interactions (zJ′ = −0.36 cm−1) between Nd(III) ion and radicals.  相似文献   

7.
This article reports the synthesis of novel, rare-earth coordination complexes with nicotinic acid. Three compounds with the general formula Ln2[(C5H4NCOO)6(H2O)4] (Ln = Yb, 1; Ln = Gd, 2; Ln = Nd, 3) were prepared from relatively cheap and readily available reactants. Their compositions and structure were characterized by IR spectroscopy and single-crystal X-ray diffraction. The magnetic and thermogravimetric properties were also studied. The complexes consist of centrosymetric, dimeric molecules having all six nicotinato ligands coordinated with the central atom in the bidentate mode. The coordination environment of the Ln3+ for all three compounds is 8. Here we describe the crystal structure of Yb and Gd complexes with nicotinic acid.   相似文献   

8.
New rare-earth cymantrenecarboxylate complexes [Ln2(μ,η2-O2CCym)22-O2CCym)2-(η2-O2CCym)2(DMSO)4] (Cym = (η5-C5H4)Mn(CO)3, Ln = Ce (1), Nd (2), Eu (3), Gd (4)) were synthesized and characterized by X-ray diffraction. In dimeric structures 1–4, two of four bridging carboxylates are chelating-bridging, and Ln atoms have coordination number 9. The catalytic activity of complex 2 in the polymerization of 2,3-dimethyl-1,3-butadiene was investigated. The thermal decomposition of the synthesized compounds was studied by DSC and TGA. According to the X-ray powder diffraction data, the final thermal decomposition product of 1 in air consists of CeO2 and Mn3O4. Under the same conditions, complexes 2–4 afford mixtures of LnMn2O5 and Mn2O3.  相似文献   

9.
The reactions of the octahedral anionic complexes [Re6Q7Br7]3? (Q = S, Se) with lanthanide bromides in DMF were studied. The reactions gave a series of compounds [Ln(DMF)8][Re6Q7Br7] (Q = S, Se) containing [Ln(DMF)8]3+ complex cations. The compounds were studied by single-crystal and powder X-ray diffraction and thermal analyses. The crystal structures of [Ln(DMF)8][Re6S7Br7] with Ln = La (I), Ce (II), Nd (III), Eu (IV), and Lu (V) and [Ln(DMF)8][Re6Se7Br7] with Ln = La (VI), Ce (VII), Pr (VIII), and Lu (IX) were determined. It was found that [Ln(DMF)8][Re6Q7Br7] (Q = S, Se) can be divided into three structural groups: I, II, and VI (type A), VII (type B), and III–V, VIII, IX (type C). The complex [Pr(DMF)8][Re6Se7Br7] was found to crystallize in two polymorphous modifications with type B and C structures. Presumably, the morphotropic transitions in the [Ln(DMF)8][Re6Q7Br7] series (Q = S, Se) are mainly related to the change in the configuration of the [Ln(DMF)8]3+ cations, resulting in a change in the packing motif of large complex ions in the crystals. The compounds [Ln(DMF)8][Re6Se7Br7] decompose according to a stepwise pattern, which suggests an intermediate formation of the complexes [Ln(DMF)6][Re6Se7Br7] (this was proved for Ln = Yb, Lu) with subsequent more extensive transformations, which affect also the cluster anion.  相似文献   

10.
Earlier NMR spectra of lanthanide complexes [Ln(18-crown-6)(NO3)3] have been analyzed by us (Babailov in Inorg Chem 51(3):1427–1433, 2012), where Ln3+ = La3+ (I), Ce3+ (II), Pr3+ (III) and Nd3+ (IV). The NMR signal assignment and conformational molecular dynamic have been found by 1D NOE and relaxation spectroscopy as well as on 2D NOESY and EXSY experiments at 170 K. In the present paper the 1H NMR method is used to study the features of paramagnetic properties of complexes IIV and [Eu(18-crown-6)(NO3)3] (V) at ambient temperature. The investigation was carried out by special method based on analysis of Δδ/z> on k(Ln)/z> (where k(Ln) is Bleaney’s constant, Δδ is paramagnetic contribution to the lanthanide-induced shifts). The obtained results indicate that the structure of the complexes (in CDCl3 and CD2Cl2) are very similar.  相似文献   

11.
New ferrocenecarboxylates of rare-earth metals, [Ln2(μ-O,η2-OOCFc)22-O,O′-OOCFc)22-NO3)2(DMSO)4] (Ln = Gd (I), Tb (II), and Y (III)) and [Gd2(μ-O,η2-OOCFc)22-OOCFc)4(DMSO)2(H2O)2] · 2DMSO · 2CH2Cl2 (IV), are synthesized and characterized by X-ray diffraction analysis. Unlike all earlier known ferrocenecarboxylates of rare-earth metals, in isostructural compounds I–III the Ln atoms are linked by four bridging carboxyl residues, two of which are chelate-bridging (the coordination number of Ln is 9). Binuclear structure IV is formed by two chelate-bridging carboxylate ligands (the coordination number of Gd is 9). Weak antiferromagnetic and weak ferromagnetic interactions between the Gd atoms are observed in complexes I and IV, respectively. The thermal decomposition of the synthesized compounds is studied by differential scanning calorimetry and thermogravimetry. According to the X-ray diffraction data, the final thermolysis products of the complexes in air are garnets Ln3Fe5O12.  相似文献   

12.
A nitronyl nitroxide, 2-(benzimidazolyl)-4,4,5,5,-tetramethylimidazolidinyl-3-oxide-1-oxy, 1 and its imino nitroxide analog 2, have been included in cucurbit[n]urils, CBn (n = 7,8), as their hydrochlorides and neutral compounds as well. The hydrochlorides form soluble 1:1 complexes. In the solid state the paramagnetic centers are well isolated and magnetic interactions are cancelled out in contrast to what is observed for the pure nitroxides. The two inclusion complexes involving 1 were characterized by X-ray crystallography. When they were heated in the solid state, one observed a clean conversion of the nitronyl nitroxide guest, 1, into its analog 2.  相似文献   

13.
Four 3D lanthanide(III) complexes with 5-sulfosalicylic acid (H3SSA) as bridging ligands, Ln(SSA)(H2O)2 [Ln=Ce(III) (1), Pr(III) (2), Nd(III) (3) and Dy(III) (4)], have been synthesized and characterized by elemental analysis, IR, XRD and single-crystal X-ray diffraction. X-ray structural analysis reveals that isostructral complexes 1-4 possess 3D structures with 4664 topology. Complexes 1 and 2 exhibit broad intraligand fluorescent emission bands. Complexes 3 and 4 not only display intraligand fluorescent emission bands, but also present Nd(III) characteristic emission in the near-IR region and sensitized luminescence of Dy(III) ions in the visible region, respectively. Variable-temperature magnetic susceptibility measurements of 2-4 have been studied over the temperature range of 4-300 K.  相似文献   

14.
A series of neutral bimetallic lanthanide aryloxides p-C6H4[OLnL(THF)n]2 [Ln = Y(1), Yb(2), Sm(3)(n = 1) and La(4)(n = 2), L = Me2NCH2CH2N{CH2-(2-O–C6H2–tBu2-3,5)}2] and alkoxides p-C6H4CH2[OLnL(THF)]2 [Ln = Y(5), Yb(6)] supported by an amine-bridged bis(phenolate) ligand have been synthesized through one-pot reactions of Ln(C5H5)3(THF), LH2 with p-benzenediol and 1,4-benzenedimethanol, respectively. All complexes have been fully characterized by elemental analyses, single-crystal X-ray diffraction analysis, and IR and multi-nuclear NMR spectroscopy(in the cases of 1, 4 and 5). Study of their catalytic behavior revealed that, in general, all complexes are efficient initiators for the polymerization of rac-lactide(LA) and rac-β-butyrolactone(BBL), except for 3 and 4 in the case of BBL. The influence imposed by lanthanides of different ionic radii and initiating groups of different structures on the activity, controllability, and stereoselectivity of polymerization were systematically studied and compared. Highly heterotactic PLA(Pr up to 0.99) and syndiotactic PHB(Pr ≈ 0.81) with high molecular weight and narrow polydispersity formed and were automatically capped with hydroxyl functionality at both ends.  相似文献   

15.
Heteroligand complexes Ln(L)(iso-Bu2PS2)2(NO3) (Ln = Sm, Tb, Dy; L = Phen, 2,2??-Bipy) (I?CVI) are synthesized. The structure of Dy(Phen)(iso-Bu2PS2)2(NO3) (III) is determined from the data of X-ray structure analysis. The crystal structure of complex III is based on discrete mononuclear molecules in which the Dy atom has distorted dodecahedral coordination (polyhedron N2O2S4). The ligands Phen, iso-Bu2PS 2 ? and NO 3 ? are bidentate-cyclic. According to the X-ray diffraction analysis data, complexes I and II are isostructural to compound III. Complexes I?CVI have photoluminescence in the visible spectral range. The photoluminescence spectra of solid samples of compounds I?CVI exhibit bands corresponding to the radiative electron transitions of the Sm3+, Tb3+, and Dy3+ ions. Among the studied compounds I?CVI, the Tb(III) complexes are characterized by the most intense photoluminescence.  相似文献   

16.
Three new Cu(II)-Ln(III) heterometallic coordination polymers based on two N-heterocyclic carboxylic ligands, {[LnCu(L1)2(L2)(H2O)2]·mH2O} n (Ln = La(1), Nd(2), Gd(3), m = 2 (for 1), 1 (for 2, 3), H2L1 = quinolinic acid, HL2 = nicotinic acid), have been synthesized and characterized. 1 has a two-dimensional (2D) layer structure with a Schl?fli symbol of (44.62), while complexes 2 and 3 are isostructural and have three-dimensional (3D) structures with a Schl?fli symbol of (3.4.5)2(32.42.52.614.74.83.9)(32.63.7) of 3-nodal net. Magnetic investigations suggest that antiferromagnetic coupling exists between NdIII and CuII in 2, while weak ferromagnetic coupling between GdIII and CuII in 3. The difference of magnetic properties between 2 and 3 has been discussed.  相似文献   

17.
Four lanthanide coordination polymers formulated as [Ln2(Ad)3(H2O)4] · 0.25H2O ( Ln = Tb (I), Pr (II), Ho (III), Dy (IV); H2Ad = adipic acid), have been solventothermally synthesized from the self-assembly of the lanthanide ions (Ln3+) with the exible adipic dicarboxylate ligand. All of them were characterized by IR spectroscopy and single-crystal X-ray diffraction. Structural analyses revealed that these complexes had intricate two-dimensional interpenetrated metal-organic networks. In addition, the photoluminescent properties of complex I was discussed in detail, which shows strong green emission, corresponds to 5 D 47 F 5 transition of Tb3+ ions.  相似文献   

18.
The reactions of anhydrous LnCl3 (Ln = Nd or Lu) with three equivalents of {(Me3Si)2NC(NR)2}Li (R = Pri or Cy; Cy is cyclohexyl) in THF afforded the corresponding tris(guanidinate) derivatives of lanthanides {(Me3Si)2NC(NR)2}3Ln (Ln = Nd, R = Pri, (1); Ln = Lu, R = Cy (2)), which were isolated after the recrystallization from hexane in 82 and 88% yields, respectively. The complex {(Me3Si)2NC(NCy)2}2{HC(NCy)2}Nd (3) containing two guanidinate ligands and one formamidinate ligand was isolated in attempting to synthesize the bis(guanidinate) borohydride derivative by the reaction of {(Me3Si)2NC(N-Cy)2}Na with Nd(BH4)3(THF)2 (in a molar ratio of 2: 1) in THF. This complex is apparently formed as a result of the fragmentation and redistribution of the guanidinate ligands. The X-ray diffraction study showed that in the crystalline state compounds 13 are mononuclear complexes containing no coordinated Lewis bases.  相似文献   

19.
Two new complexes [Co(NIT-1′-MeBzIm)2(Dca)2] (I) and [Ni(NIT-1′-MeBzIm)2(Dca)(H2O) · NO3 · H2O (II) (NIT-1′-MeBzIm = 2-{2′-[(l′-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; Dca = N(CN)2) were prepared and structurally characterized by single-crystal X-ray diffraction. Relevant crystallographic parameters are as follows: monoclinic, P21/c space group, Z = 4; crystal data: C34H38N14O4Co, M = 765.71, a = 14.343(4), b = 14.322(4), c = 18.626(5) Å, β = 105.956(3)° for I. Orthorhombic Pna21 space group, Z = 4; crystal data: C32H42N12O9Ni, M = 797.49, a = 24.426(4), b = 11.0326(18), c = 13.980(2)Å for II. The X-ray analysis reveals that Co2+ ion and Ni2+ ion resides in a approximate sdistorted octahedron center. In I, the complex was linked by intermolecular hydrogen bonds, resulting in a 1D chain configuration. In II, the complex was linked by intermolecular hydrogen bonds, resulting in a 2D network configuration.  相似文献   

20.
Heteroligand complexes Tm(L)(iso-Bu2PS2)2(NO3) (L = 2,2′-Bipy (II), Phen (III)) are synthesized. According to the X-ray phase analysis data, complex III is isostructural to mononuclear compound [Dy(Phen)(iso-Bu2PS2)2(NO3)] including, according to the X-ray diffraction data, a coordination polyhedron DyN2O2S4 (distorted dodecahedron). Single crystals of compounds [Ln(2,2′-Bipy)(iso-Bu2PS2)2(NO3)] · C6H6 (Ln = Tm (IV), Tb (V)) are obtained. An X-ray diffraction analysis shows that the crystal structures of these isostructural compounds are formed by molecules of mononuclear complexes [Ln(2,2′-Bipy)(iso-Bu2PS2)2(NO3) and uncoordinated C6H6 molecules. In complexes IV and V, the ligands [Ln(2,2′-Bipy)(iso-Bu2PS 2 ? , and NO 3 ? are bidentate-cyclic. The coordination polyhedron LnN2O2S4 is a distorted dodecahedron. Complexes II and III possess photoluminescence in the visible spectral range (λmax = 478 and 477 nm, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号