首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
New catecholate Sb(V) complexes triphenyl(3,6-di-tert-butylcatecholato)antimony(V) Ph3Sb(3,6-DBCat) (1) and triphenyl(perchloroxanthrenecatecholato)antimony(V) Ph3Sb(OXCatCl) (2) were synthesized by the oxidative addition reaction of corresponding o-quinones (3,6-di-tert-butyl-o-benzoquinone and perchloroxanthrenequinone-2,3) with triphenylantimony. Catecholates 1 and 2 can alternatively be synthesized by reacting the appropriate thallium catecholate with triphenylantimony dichloride. The oxidative addition reaction of an equimolar ratio of 4,4′-di-(3-methyl-6-tert-butyl-o-benzoquinone) and triphenylantimony yielded 4-(2-methyl-5-tert-butyl-cyclohexadien-1,5-dion-3,4-yl)-(3-methyl-6-tert-butyl-catecholato)triphenylantimony(V) Ph3Sb(Cat-Q) (3); in the case of a 1:2 molar ratio, complex 4,4′-di-[(3-methyl-6-tert-butyl-catecholato)triphenylantimony(V)] Ph3Sb(Cat-Cat)SbPh3 (4) resulted. Complexes 1-4 were characterized by IR- and 1H NMR spectroscopy. Molecular structures of 1, 2 and 4 were determined by X-ray crystallography to be a distorted tetragonal-pyramidal.  相似文献   

2.
The antiradical activity of the functionalized triphenylantimony(V) catecholates Ph3Sb[4-O(CH2CH2)2N-3,6-DBCat] (I), Ph3Sb[4,5-Piperaz-3,6-DBCat] (II), and Ph3Sb[4-PhN(CH2CH2)2N-3,6-DBCat] (III) (where [4-O(CH2CH2)2N-3,6-DBCat]2?, [4,5-Piperaz-3,6-DBCat]2?, and [4-PhN(CH2CH2)2N-3,6-DBCat]2? are the dianionic ligands 3,6-di-tert-butyl-4-(morpholin-1-yl)-, 3,6-di-tert-butyl-4,5-(piperazine-1,4-diyl)-, and 3,6-di-tert-butyl-4-(4-phenylpiperazin-1-yl)catecholates, respectively) was studied in reactions with the diphenylpicrylhydrazyl radical during autooxidation of unsaturated fatty (oleic and linoleic) acids with lipid peroxidation of Russian sturgeon (Acipenser gueldenstaedti B.) sperm and human blood erythrocytes in vitro as examples. The EC50 and n DPPH values obtained indicate the high antiradical activity of complexes II and III in the reactions with the stable radical. On the whole, complexes I–III inhibit the lipid peroxidation in both model (oxidation of unsaturated fatty acids) and in vitro experiments. The inhibiting effects of the complexes are comparable with and even, in some cases, higher than those of the known antioxidant ionol.  相似文献   

3.
The reaction of triphenylantimony with propiolic acid in the presence of hydrogen peroxide (molar ratios 1 : 2 : 1 and 1 : 1 : 1) in diethyl ether affords triphenylantimony dipropiolate Ph3Sb[OC(O)C≡CH]2 (I) and μ2-oxobis[(propiolato)triphenylantimony] [Ph3SbOC(O)C≡CH]2O (II). Tetraphenylantimony propiolate Ph4SbOC(O)C≡CH (III) is synthesized from pentaphenylantimony and propiolic or acetylenedicarboxylic acid in toluene. According to the X-ray diffraction data, the crystals of compounds I and III include two types of crystallographically independent molecules (a and b). The antimony atoms in molecules Ia, Ib, II, IIIa, and IIIb have the trigonal-bipyramidal coordination mode with different degrees of distortion. The OSbO and OSbC axial angles are 176.8(2)° (Ia, Ib), 170.17(15)°, 178.78(14)° (II), and 173.2(5)°, 174.4(5)° (IIIa, IIIb). The CSbC equatorial angles lie in the ranges 108.2(3)°–143.1(3)° (I), 109.0(2)°–131.0(2)° (II), and 113.1(4)°–125.4(4)° (III). The SbOSb angle in II is 141.55(19)°. The Sb-C bond lengths are 2.103(8)–2.141(5) (I), 2.105(5)–2.119(5) (II), and 2.076(12)–2.166(13) Å (III). The Sb-O distances increase in a series of I, II, and III: 2.139(6)–2.156(7) (Ia, Ib); 2.206(4), 2.218(3) (II); and 2.338(10), 2.340(10) Å (III).  相似文献   

4.
The electrochemical transformations and antiradical activity of penta- and hexacoordinate antimony(V) complexes I–V containing the tridentate O,N,O-donor ligand, N,N-bis(di-3,5-tert-butyl-2-hydroxyphenyl)amine, are studied. The oxidation of hexacoordinate triarylantimony(V) compounds R3Sb(Cat-NH-Cat) (I–III) leads to the formation of neutral paramagnetic intermediates Ia–IIIa. Two anodic reversible one-electron stages are observed for pentacoordinate complexes R′2Sb(Cat-N-Cat) (IV, V). The possibility of the formation of stable paramagnetic species in electrochemical oxidation is a reason for the antiradical activity of the complexes. The study of the reactions of compounds I–V with the electrogenerated superoxide radical anion, diphenylpicrylhydrazyl radical, peroxy radicals, and hydroperoxides formed by the autooxidation of unsaturated fatty acids (oleic, linoleic) shows that all complexes exhibit a pronounced antiradical activity. The highest effect is observed for compounds I, IV, and V characterized by the prolonged action.  相似文献   

5.
Novel functionalized triphenylantimony(V) catecholates - Ph3Sb[4-O(CH2CH2)2N-3,6-DBCat] (1), Ph3Sb[4-PhN(CH2CH2)2N-3,6-DBCat] (2), Ph3Sb[4-Ph2CHN(CH2CH2)2N-3,6-DBCat] (3), Ph3Sb[4,5-Piperaz-3,6-DBCat] (4) and binuclear bis-catecholate Ph3Sb[3,6-DBCat-4-N(CH2CH2)2N-4-3,6-DBCat]SbPh3 (5) were synthesized by the oxidative addition reaction of corresponding o-quinones with triphenylantimony. The [4-O(CH2CH2)2N-3,6-DBCat]2−, [4-PhN(CH2CH2)2N-3,6-DBCat]2−, [4-Ph2CHN(CH2CH2)2N-3,6-DBCat]2− and [4,5-Piperaz-3,6-DBCat]2− are 4-(morpholin-1-yl)-, 4-(4-phenyl-piperazin-1-yl)-, 4-(4-dephenylmethyl-piperazin-1-yl)-, and 4,5-(piperazin-1,4-diyl)-3,6-di-tert-butyl-catecholate dianionic ligands, correspondingly. Complexes 1-5 were characterized in details by IR-, 1H and 13C NMR spectroscopy and cyclic voltammometry. Molecular structure of 4·CH3OH was determined by X-ray crystallography to be a distorted tetragonal-pyramidal. The NMR spectroscopic and electrochemical investigations of complexes in the presence of air reveal the reactions of complexes with dioxygen leading to the formation of spiroendoperoxides of 1,2,4,3-trioxastibolane type in a NMR yield of 25-37%.  相似文献   

6.
The radical scavenging effect of the substituted catecholates (1-3, 6) and o-amidophenolates (4, 5) of triphenylantimony(V) in reactions with DPPH radical and in a process of oleic acid peroxidation was studied in details. Complexes 1-6 show the high activity in radical scavenging reactions with DPPH radical leading to disappearance of radical species. Complexes were demonstrated to be high-efficient inhibitors of chain-radical process of the peroxidation of oleic acid as well as the effective destructors of the formed hydroperoxides. It was found that the effectiveness of complexes studied in the inhibition of the peroxidation of oleic acid depends on the first oxidation potential of complex.  相似文献   

7.
Neutral complex 1 and mono-cationic complex 2 were made available using Ph2PCH2CH2OCH3 and 1,2-diphenyl-1,2-ethanediamine ligands. One of the chloride atoms in complex 1 was abstracted by AgOTf to prepare the mono-cationic O–Ru–P closed complex 2. The hemilability of hybrid ether-phosphine ligand in such complexes was monitored by 31P{1H} NMR and confirmed by X-ray single crystal. XRD structure of complex 2 was found to be a Trigonal crystal system with P3 space group and Z = 6.  相似文献   

8.
Indium catecholate complexes 3,6-CatInR (3,6-Cat is the 3,6-di-tert-butyl-o-benzoquinone dianion (3,6-Q), R = Me (I) and Et (II)) are synthesized by the exchange reaction between RInI2 and thallium catecholate 3,6-CatTl2. Compounds I and II are trimeric in both the solution and crystalline state. The oxidation of compound I and earlier described complex [3,6-CatInI(THF)]2 (THF is tetrahydrofuran) by various substrates (iodine, 3,6-Q, and tetramethylthiuram disulfide) is studied. Different indium(III) o-semiquinone complexes are the reaction products, depending on the reaction conditions.  相似文献   

9.
Complexes with antimony-containing anions, [Ph3MeP] + 2 [SbI5]2? (I), [Ph3MeP] + 2 [Sb3I12]3? (II), [Ph3MeP] + 3 [Sb3I12]3? · Me2C=O (III), and [Ph3MeP] + 3 [Sb2I9]3? (IV), were synthesized by reacting triphenylmethylphosphonium iodide with antimony iodide. The central atom in the cations of the complexes has a distorted tetrahedral coordination. In the trinuclear anions of complexes II and III, each of the terminal SbI3 groups is bound to the central Sb atom through two μ2- and one μ3 iodine bridges (SbSbSb angles are 103.0° and 102.2°, respectively). In the binuclear anion of complex IV, antimony atoms are linked with each other via three bridging iodine atoms.  相似文献   

10.
The reaction of pentaphenylantimony with mercury iodide affords the ionic complex [Ph4Sb] 2 + [Hg2I6]2?·Ph2Hg (I). The [Ph4Sb] 2 + [Hg2I6]2? (II) and [Ph4Sb] 2 + [Cd2I6]2? (III) complexes are synthesized from tetraphenylantimony iodide and mercury and cadmium iodides. The [Ph4Sb] 2 + [Hg4I10]2? complex (IV) is prepared from tetraphenylantimony 2,4-dimethylbenzenesulfonate and mercury iodide. According to the X-ray diffraction data, the Sb atom in the [Ph4Sb]+ cations of complex I has virtually ideal tetrahedral coordination (the CSbC angles are 108.09°–109.64°). In the central square fragment Hg2I2 of the [Hg2I6]2? anion, the Hg-Ibr bond lengths are 2.825 and 3.075 Å, and the terminal iodine atoms are more strongly bonded to the mercury atoms (Hg-Iterm 2.691 and 2.700 Å). The [Cd2I6]2? anion in complex III has a similar structure (the Cd-Ibridg and Cd-Iterm distances are 2.865, 2.872 and 2.723, 2.748 Å, respectively). The anions in complex IV are joined by I…Hg (3.651 Å) and I…I (4.058 Å) interactions into an infinite dimeric network.  相似文献   

11.
The electrochemical transformations and antiradical activity of trialkylantimony(V) o-amidophenolate derivatives, (AP)SbR3 (AP = 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-amidophenolate); R = CH3 (I), C2H5 (II), and C6H11 (III), are studied. The electrochemical oxidation of compounds IIII proceeds successively to form mono- and dicationic forms of the complexes. The presence of the donor hydrocarbon groups at the antimony(V) atom shifts the oxidation potentials to the cathodic range and decreases the stability of the monocationic complexes formed in electrochemical oxidation. The second anodic process is irreversible and accompanied by o-iminoquinone decoordination. The antiradical activity of compounds IIII is studied in the reaction with the diphenylpicrylhydrazyl radical and oleic acid autooxidation. The values obtained for indices EC50 and IC50 indicate the antiradical activity of the studied compounds. Complexes IIII were found to be the efficient inhibitors of oleic acid oxidation and act as efficient destructors of hydroperoxides.  相似文献   

12.
A series of heterocyclic compounds possessing imidazolo[1,2-a]pyridine moiety, namely, ethyl 7-methylimidazolo[1,2-a] pyridine-2-carboxylate L1; 2-(3-nitrophenyl)imidazo[1,2-a]pyridine L2; 3-(imidazo[1,2-a]pyridine-2-yl)aniline L3; 2-phenylimidazolo[1,2-a]pyridine-3carbaldehyde L4; and 2-phenylimidazo[1,2-a]pyridine L5 were synthesized. The in situ generated copper (II), iron (II), and zinc (II) complexes of these compounds (L1–L5) were examined for their catalytic activities and were found to be effective catalysts for the oxidation of catechol to o-quinone with the atmospheric oxygen. The present study reveals that the rate of oxidation depends on four parameters: the nature of the ligand, transition metals, ion salts, and the concentration of the complex. The combination L2(Cu(CH 3 COO) 2 ) gives the highest rate.  相似文献   

13.
The reactions of dimethyltitanocene borohydride and vanadocene with cymantrenecarboxylic acid CymCOOH gave the monomer (C5H4Me)2Ti(OOCCym)2 (I) and dimer (C5H5)V(OOCCym)4V(C5H5) (II), respectively. Treatment of Cu(II) cymantrenylcarboxylate with excess lutidine gives the monomer (C7H9N)2Cu(COOCym)2 (III). The reaction of lutidine with a mixture of Cu(II) and Mn(II) bis-cymantrenecarboxylates affords the heterometallic trinuclear complex (C7H9N)Cu(OOCCym)3Mn(OOCCym)3Cu(C7H9N) (IV). The structures of I–IV were established by X-ray diffraction. In I and III, the cymantrenecarboxylate groups are terminal and in II and IV, they are bridging, which is also manifested as characteristic OCO stretching bands in the IR spectra.  相似文献   

14.
The syntheses and spectroscopic (NMR, MS) investigations of the antimonates [Ph4P]+[Me2SbCl4] (1), [Me4Sb]+[Me2SbCl4] (2), [Et4N]+[Ph2SbCl4] (3), [Bu4N]+[Ph2SbCl4] (4), [Me4Sb]+[Ph2SbCl4] (5), [Et3MeSb]+[Ph2SbCl4] (6), [Et4N]+[Ph2SbF4] (7) and [Et4N]+[Ph2SbBr4] (8) are reported. Halogen scrambling reactions of Et4NBr or Ph4EBr (E = P, Sb) with R2SbCl3 (R = Me, Ph) produce mixtures of compounds from which crystals of [Et4N]+[Ph2SbBr1.24Cl2.76] (9), [Et4N]+[Ph2SbBr2.92Cl1.08] (10) or [Ph4Sb]+[Me2SbCl4] (11) were isolated. The crystal and molecular structures of 1 and 3-11 are reported.  相似文献   

15.
A series of nickel complexes with 1,3-xylylenediamine, 1,2-diaminobenzene and 1,2-aminobenzylamine were first synthesized and characterized. The reaction of these amines with Ni(OAc)2 · 4H2O and NiCl2 · 6H2O in methanol or tetrahydrofuran resulted in the production of four novel nickel complexes I, II, III, and IV. The structure of each complex was determined by X-ray diffraction analysis. Each complex was also characterized using elemental analysis, 1H NMR and IR. The complexes were then used to catalyze the Henry reaction, and good catalytic results (65?C99%) were achieved. The catalytic activity of the complexes was determined by 1H NMR.  相似文献   

16.
The substitution of a labile THF ligand in Cr(CO)5(THF) by the Ph2Se2 molecule provided the monomeric complex Cr(CO)5(Ph2Se2) (I). The similar diiodo-tricarbonyl-iron complex (CO)3FeI2(Ph2Se2) (II) (along with [(CO)3Fe(??-SePh)3Fe(CO)3]+(I5)? (III) as a by-product) was separated upon the treatment of ??phenylselenyl iodide?? [PhSeI] with iron pentacarbonyl, Fe(CO)5. Complex II is isostructural with the known tellurium-containing analogue, (CO)3FeI2(Te2Ph2). The latter have provided the dimeric tellurophenyl bridged iodo-tricarbonyl-iron complex [(CO)3IFe(??-TePh)]2 (IV) under action of the excess of Fe(CO)5. Its bromide analogue [(CO)3BrFe(??-TePh)]2 (V) was prepared upon the treatment of PhTeBr with the excess of Fe(CO)5. The reaction of [PhSeI] with Re(CO)5Cl afforded only [(CO)6Re2(??-I)2(??-Se2Ph2)] (VI) in contrast to the (CO)3Re(PhTeI)3(??3-I) formation in similar known reaction of [PhTeI]. The molecular and crystal structures of I?CVI is discussed.  相似文献   

17.
Bis(tetraphenylantimony) 1,2-diphenylethanedione dioximate toluene solvate Ph4SbONC(Ph)C(Ph)NOSbPh4 · 2 PhCH3 (I) and tetraphenylantimony 2-hydroxy-1,2-diphenyl(ethanone oximate Ph4SbONC(Ph)CH(Ph)OH (II) have been synthesized by the reaction of pentaphenylantimony with 1,2-diphenylethane dioxime and 2-hydroxy-1,2-diphenylethanone oxime in toluene. A molecule of compound I is centrosymmetric with an inversion center at the midpoint of the C-C bond in the ethane moiety. A crystal of compound II contains two types of crystallographically independent molecules A and B. Antimony atoms in compounds I and II have a distorted tetragonal bipyramidal surrounding: equatorial CSbC and axial CSbO angles are 114.95(10)°–126.82(11)° and 173.24(9)° (I), 117.2(2)°–122.9(2)° and 178.15(18)° (IIA), and 112.3(2)°–127.7(2)° and 175.09(18)° (IIB), respectively. The Sb-C and Sb-O bond lengths are 2.106(3)–2.182(3) and 2.1344(17) ÅI), 2.118(5)–2.4199(5) and 2.153(4)Å(IIA), and 2.106(5)–2.200(5) and 2.120(4) Å (IIB), respectively. A molecule of compounds I, IIA, and IIB has been found to contain Sb...N intramolecular contacts (2.838(3), 2.867(5), and 2.889(5)Å, respectively). Molecules of compounds IIA and IIB contain O-H...N hydrogen bonds (H...N, 1.91(9) and 2.06(8) Å, respectively).  相似文献   

18.
A series of new tin(IV) complexes based on 2-hydroxy-3,6-di-tert-butyl-para-benzoquinone (LH) of the general formula L2SnR2 (R = Me (I), Et (II), Bu n (III), Ph (IV)) and LSnMe3 (V) were synthesized. The obtained compounds were characterized by IR and 1H, 13C and 119Sn NMR spectroscopy and elemental analysis. The X-ray diffraction analysis was carried out for complexes L2Sn(Bu n )2 (III) and LSnMe3 (V). The low-frequency region of the IR spectra, which has not earlier been studied in detail, was interpreted for compounds I–V and previously described complex LSnPh3 (VI). The electrochemical properties of LH and related tin complexes I–VI were studied. The nature of the hydrocarbon groups at the metal atom affects the stability of the intermediates formed in the electrochemical reactions.  相似文献   

19.
Solvate Ph3Sb[OC(O)C6H4(OH-4)]2 · 1/2Et2O (I) has been synthesized by the reaction between triphenylantimony and 4-oxybenzoic acid in the presence of hydrogen peroxide in diethyl ether. Tetraphenylantimony 4-oxybenzoate, which crystallizes from DMSO in the form of solvate Ph4SbOC(O)C6H4(OH-4) · DMSO (II), has been synthesized from pentaphenylantimony and triphenylantimony bis(4-oxybenzoate) or 4-oxybenzoic acid. According to X-ray diffraction data, an antimony atom in molecules of compounds I and II has a trigonal bipyramidal coordination. Crystals of compound I contain two crystallographically independent types of molecules (A and B). The Sb-C and Sb-O distances, the equatorial CSbC and axial OSbO angles are, respectively, 2.083(9)–2.103(8)Å; 2.068(5), 2.128(5)Å; 117.6(3)°–124.2(3)° and 171.5(2)° (IA); 2.103(9)–2.135(8)Å; 2.086(5), 2.154(6)Å;110.2(3)°–138.0(4)° and 174.8(2)° (IB). In compound II, Sb-C is 2.117(2)–2.175(2) Å, Sb-O is 2.247(2) Å, and CeqSbCeq and OSbCax angles are 110.89(9)°–133.30(9)° and 177.05(7)°, respectively. The Sb…O=C intramolecular contacts are 3.151(7), 3.153(8) Å (IA), 2.985(8), 3.008(9) Å (IB), and 2.975(5) Å (II). Molecules IA and IB are conformation isomers, which differ from each other by the arrangement of carboxyl groups with respect to the equatorial plane.  相似文献   

20.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号