首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The allosteric control of the receptor properties of two flexible covalent cages is reported. These receptors consist of two zinc(II) porphyrins connected by four linkers of two different sizes, each incorporating two 1,2,3-triazolyl ligands. Silver(I) ions act as effectors, responsible for an on/off encapsulation mechanism of neutral guest molecules. Binding silver(I) ions to the triazoles opens the cages and triggers the coordination of pyrazine or the encapsulation of N,N′-dibutyl-1,4,5,8-naphthalene diimide. The X-ray structure of the silver(I)-complexed receptor with short connectors is reported, revealing the hollow structure with a cavity well-defined by two eclipsed porphyrins. Rather unexpectedly, the crystallographic structure of this receptor with pyrazine as a guest molecule showed that the cavity is occupied by two pyrazines, each binding to the zinc(II) porphyrin in a monotopic fashion.  相似文献   

2.
Connecting two facially-protected porphyrins was expected to lead to an equal mixture of laterally-bridged doubly-protected bis-porphyrins; one in which the two porphyrin units were protected on the same face (syn) and one with the two prophyrin units protected on opposite faces (anti). Addition of a co-factor (bidentate ligand) was expected to lead predominantly to the syn-bis-porphyrin by a templated self-replication process. This concept was explored using Baldwin's capped porphyrin. Bis(capped porphyrins) were synthesised in several steps starting from zinc(II) capped porphyrin 2. Nitration of 2 followed by reduction and photo-oxidation yields a mixture of zinc(II) porphyrindiones 7 and 8 that can separated by HPLC. The condensation of 2 molar eq. of zinc(II) porphyrin-7,8-dione 8 with 1,2,4,5-benzenetetramine leads to the formation of a 1:1 mixture of syn- and anti-dizinc(II) bis(7,8-capped porphyrins), 11 and 12, respectively, that have almost identical spectroscopic properties. These two geometric isomers were distinguished by significant differences in their molecular recognition properties. Likewise the syn- and anti-dizinc(II) bis(2,3-capped porphyrins), 9 and 10, respectively, are synthesised from the related zinc(II) capped porphyrin-2,3-dione 7, and were also identified using molecular recognition studies. The molecular recognition properties of these bis(capped porphyrins) were utilised in studies of self-replicating porphyrin systems. The results show that tetraazaanthraceno-bis-porphyrins 9-12 can catalyse their own formation but self-replication was not observed. These results highlight the potential that these interesting hosts have as templates in supramolecular chemistry, synthesis and catalysis.  相似文献   

3.
The polarized total-reflection X-ray absorption fine structure method was applied to characterize zinc porphyrins at the air-water interface. The X-ray absorption near edge structure exhibited a significant difference depending on the polarization of the X-ray. A shoulder peak of the Zn K-edge corresponding to the 1s-4p(z) transition for a square planar metal complex without axial coordination(s) was observed at 9662 eV, which indicates that the axial coordination sites of zinc porphyrin molecules examined are not fully hydrated at the air-water interface. The molecular orientation of zinc porphyrins was determined by analyzing the polarization dependence of the transition peak intensity. The meso-substituted porphyrin derivative 5,10,15,20-tetraphenylporphyrinatozinc(II) (ZnTPP) orients rather parallel to the solution surface. In contrast to ZnTPP, the zinc(II) protoporphyrin IX (ZnPP) with hydrophilic carboxyl groups at one side of the molecule stands up with respect to the solution surface, and the average tilting angle of the porphyrin plane to the surface was evaluated to be between 57 degrees and 43 degrees. In addition, the axial coordination of ZnPP is modified depending on the surface concentration, in which the axial hydration to the zinc center is effectively inhibited in the compressed surface layer.  相似文献   

4.
The phosphorylation of proteins represents a ubiquitous mechanism for the cellular signal control of many different processes, and thus selective recognition and sensing of phosphorylated peptides and proteins in aqueous solution should be regarded as important targets in the research field of molecular recognition. We now describe the design of fluorescent chemosensors bearing two zinc ions coordinated to distinct dipicolylamine (Dpa) sites. Fluorescence titration experiments show the selective and strong binding toward phosphate derivatives in aqueous solution. On the basis of (1)H NMR and (31)P NMR studies, and the single-crystal X-ray structural analysis, it is clear that two Zn(Dpa) units of the binuclear receptors cooperatively act to bind a phosphate site of these derivatives. Good agreement of the binding affinity estimated by isothermal titration calorimetry with fluorescence titration measurements revealed that these two receptors can fluorometrically sense several phosphorylated peptides that have consensus sequences modified with natural kinases. These chemosensors display the following significant features: (i) clear distinction between phosphorylated and nonphosphorylated peptides, (ii) sequence-dependent recognition, and (iii) strong binding to a negatively charged phosphorylated peptide, all of which can be mainly ascribed to coordination chemistry and electrostatic interactions between the receptors and the corresponding peptides. Detailed titration experiments clarified that the phosphate anion-assisted coordination of the second Zn(II) to the binuclear receptors is crucial for the fluorescence intensification upon binding to the phosphorylated derivatives. In addition, it is demonstrated that the binuclear receptors can be useful for the convenient fluorescent detection of a natural phosphatase (PTP1B) catalyzed dephosphorylation.  相似文献   

5.
Zinc bis-porphyrin molecular tweezers composed of a N(4) spacer bound through pyridyl units to the meso position of porphyrins were synthesized, and the tweezers are closed by the coordination of a copper(II) ion inside the spacer ligand. The effect of the π-π interaction between the porphyrin rings in the closed conformation on the absorption spectra of multi-electron oxidized species and the reduction potentials were clarified by chemical and electrochemical oxidation of the closed form of the zinc bis-porphyrin molecular tweezers in comparison with the open form without copper(II) ion and the corresponding porphyrin monomer. The shifts in redox potentials and absorption spectrum of the porphyrin dication indicate a strong electronic interaction between the two oxidized porphyrins in the closed form, whereas there is little interaction between them in the neutral form. The dynamics of copper(II) ion coordination and subsequent electron transfer was examined by using a stopped-flow UV/Vis spectroscopic technique. It was confirmed that coordination of copper(II) occurs prior to electron-transfer oxidation of the closed form of the zinc bis-porphyrin molecular tweezers.  相似文献   

6.
We report a new strategy for the preparation of chelating bidentate ligands, which involves just the mixing of two monodentate ligands functionalized with complementary binding sites. In the current example, the assembly process is based on selective metal-ligand interactions, using phosphite zinc(II) porphyrins 1-6 and the nitrogen donor ligands b-i. From only 16 monodentate ligands, a library of 60 palladium catalysts based on 48 bidentate ligand assemblies has been prepared. The relatively small catalyst library gave a large variety in the selectivity of the alkylation of rac-1,3-diphenyl-2-propenyl acetate. Importantly, small variations in the building blocks lead to large differences in the enantioselectivity imposed by the catalyst (up to 97% ee).  相似文献   

7.
Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemistry level, showing due to the cancellation of symmetric center, these amino acid zinc(II) porphyrins exhibit second order nonlinear optical response. The analysis of β components indicated that these amino acid zinc(II) porphyrins are of multipolarizabilities, and they may be ascribed as the "mixture" of octupolar and dipoar molecules with ||βJ=3||/||βJ=1|| ≈ 5. It is found that there are no significant differences between the static β values of non-chiral and chiral amino acid zinc(II) porphyrins. However, the βxyz component, which is quite important to quadratic macroscopic х (2) susceptibility of chiral material, is increased significantly with the increase of side chain group of amino acids.  相似文献   

8.
Although vast information about the coordination ability of amino acids and peptides to metal ions is available, little use of this has been made in the rational design of selective peptide receptors. We have combined a copper(II) nitrilotriacetato (NTA) complex with an ammonium-ion-sensitive and luminescent benzocrown ether. This compound revealed micromolar affinities and selectivities for glycine- and histidine-containing sequences, which closely resembles those of copper(II) ion peptide binding: the two free coordination sites of the copper(II) NTA complex bind to imidazole and amido nitrogen atoms, replicating the initial coordination steps of non-complexed copper(II) ions. The benzocrown ether recognizes the N-terminal amino moiety intramolecularly, and the significantly increased emission intensity signals the binding event, because only if prior coordination of the peptide has taken place is the intramolecular ammonium ion-benzocrown ether interaction of sufficient strength in water to trigger an emission signal. Intermolecular ammonium ion-benzocrown ether binding is not observed. Isothermal titration calorimetry confirmed the binding constants derived from emission titrations. Thus, as deduced from peptide coordination studies, the combination of a truncated copper(II) coordination sphere and a luminescent benzocrown ether allows for the more rational design of sequence-selective peptide receptors.  相似文献   

9.
[structure: see text]. An X-ray crystallographic study of zinc(II) 5,15-di-(2-methoxymethylphenyl)-porphyrin indicates that it forms a coordination polymer through ligation of the ether oxygen atoms on the porphyrin peripheries to the metal centers of two identical adjacent porphyrins. This gives a novel extensively linked, three-dimensional polymeric structure in which the zinc(II) metal forms a six-coordination center. The uniquely structured network has cavities between 4.81 and 9.27 angstroms, which makes it resemble molecular sieve materials.  相似文献   

10.
Two self-complementary phenanthroline-strapped porphyrins bearing imidazole arms and C 12 or C 18 alkyl chains were synthesized, and their surface self-assembly was investigated by atomic force microscopy (AFM) on mica and highly ordered pyrrolitic graphite (HOPG). Upon zinc(II) complexation, stable porphyrin dimers formed, as confirmed by DOSY (1)H NMR and UV-visible spectroscopy. In solution, the dimers formed J-aggregates. AFM studies of the solutions dip-coated onto mica or drop-casted onto HOPG revealed that the morphologies of the assemblies formed were surface-tuned. On mica, fiber-like assemblies of short stacks of J-aggregates were observed. The strong influence of the mica's epitaxy on the orientation of the fibers suggested a surface-assisted assembly process. On HOPG, interactions between the alkyl chains and the graphite surface resulted in the stabilization and trapping of monomer species followed by their subsequent association into coordination polymers on the surface. Interdigitation of the alkyl chains of separate polymer strands induced lateral association of wires to form islands that grew preferentially upon drop-casting and slow evaporation. Clusters of laterally assembled wires were observed for the more mobile functionalized porphyrins bearing C 12 chains.  相似文献   

11.
A series of iron porphyrins has been synthesized as models of cytochrome c oxidase; their activity as 4e catalysts in the reduction of dioxygen has been studied at pH 7. These compounds have been obtained by grafting very different residues onto the same iron complex, namely tripodal tetraamines, pickets, and straps, in order to change the environment of the metal center. In the case of porphyrins bearing a tripodal cap, the secondary amines have been alkylated with different substituents so as to modify the electronic environment of the distal pocket. Surprisingly, when the iron porphyrin is functionalized with four identical acrylamido pickets, the resulting complex exhibits biomimetic activity in that it catalyzes oxygen reduction with almost no production of hydrogen peroxide. The crystal structure of the redox-inactive zinc(II) analogue is reported; this shows how the metal influences the spatial arrangement of the four pickets through axial coordination and hydrogen bonding. Even a bis-strapped iron porphyrin, for which no dimerization or self-aggregation can occur at the electrode surface, acts as a 4e catalyst for O2 reduction. It is thus demonstrated that at pH close to physiological values, the iron porphyrin is an intrinsically efficient catalyst for the reduction of oxygen to water.  相似文献   

12.
A series of meso‐tetrakis‐(ERE donor) zinc(II) porphyrins n Zn (ERE donor=4‐R‐3,5‐bis[(E)‐methyl]phenyl; 1 Zn: E=NMe2, R=Br; 2 Zn: E=NMe2, R=H; 3 Zn: E=OMe, R=Br; 4 Zn: E=OMe, R=H) have been synthesized in excellent yields. As a result of the combination of a Lewis acidic site and eight Lewis basic sites within one molecule, monomeric molecules of n Zn self‐assemble to form one‐dimensional porphyrin polymers [ n Zn] in the solid state, as confirmed for 1 Zn and 3 Zn by X‐ray crystallography. The coordination environment around the zinc(II) ions in these polymers is octahedral. They are ligated by four equatorial nitrogen atoms of the porphyrin and two apical E atoms (E=N, O) provided by the EBrE donor groups of adjacent n Zn molecules. Complexes 2 Zn and 4 Zn did not form single crystals, but solid‐state UV/Vis analysis points to the formation of similar structures. Solution UV/Vis and 1H NMR spectroscopy indicated that interactions between 1 Zn and 2 Zn monomers in the polymers are stronger than between 3 Zn and 4 Zn monomers. Interestingly, they also revealed that the presence of a neighboring bromine atom in the EBrE donor groups has a considerable influence on the coordination properties of the benzylic N or O atoms. The zinc(II) ions of the porphyrins most likely adopt only hexacoordination in the solid state, owing to the unique predisposition of Lewis acidic and basic sites in the n Zn molecules. Several parameters of the aggregates, for example, the interplanar separation between porphyrins and the zinc–zinc distances, change as a function of the coordinating E groups. The high degree of modularity in their synthesis makes these zinc(II) porphyrins an interesting new entry in noncovalent multiporphyrin assemblies.  相似文献   

13.
meso-Arylamino- and alkylamino-substituted porphyrins were efficiently synthesized by reactions of meso-halogenated porphyrins with amines via palladium-catalyzed amination. The combination of palladium acetate and the commercially available phosphine ligand bis(2-diphenylphosphinophenyl) ether (DPEphos) is effective for catalyzing the couplings of both [5-bromo-10,20-diphenyl porphyrino]zinc(II) and [5,15-dibromo-10,20-diphenylporphyrino]zinc(II) with amines to give the corresponding monoamino- and diamino-substituted porphyrins in high yields under mild conditions. The corresponding halogenated free-base porphyrins also underwent the cross-coupling reactions efficiently under similar catalytic conditions.  相似文献   

14.
Tetrakis(alloxycarbonyl)porphyrin and its β-octafluoro-substituted derivatives were synthesized via Lindsey method and transformed to their zinc complexes.Single crystal X-ray structures of corresponding Zn(Ⅱ) porphyrins revealed that β-octafluorination will give more compactness of porphyrin moieties in the crystal structure owing to the hydrogen bonding interactions involving β-fluorine atoms.An unusual six-coordinated Zn(Ⅱ) was found via intramolecular coordination of oxygen atom of meso-substituents with central Zn(Ⅱ).  相似文献   

15.
Porphyrins which contain 1-hydroxy(alkoxy)ethyl or alkoxymethyl substituents on the periphery of the macrocycle (i.e. formally able to yield benzyl type carbocations) react with nucleophiles (4-tert-butylphenol or the -diketones acetylacetone, benzoylacetone, dibenzoylmethane, or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione) in the presence of excess zinc acetate. They give high yields of the corresponding addition products, which are the zinc complexes of porphyrins with a 1-(4-tert-butylphenoxy)ethyl substituent or with substituents containing -diketone residues.  相似文献   

16.
A polyamino dizinc(II) complex, [(N-bisdien)Zn2(II)Cl2](ClO4)2, (LZn), has been synthesized as a new nucleobase receptor molecule in aqueous solution at physiological pH, and shows to be highly selective in recognizing deoxythymidine (dT) and thymidylylthymidine (TpT). The strong acidic Zn(II) ions in LZn at the fifth coordination sites interact with a variety of nucleosides. The binding and recognition processes have been studied by potentiometric titration. The X-ray crystal analysis of LZn shows that the two zinc ions are out of the basal plane of the macrocycle, favoring the effective recognition of TpT on the single strand of DNA. In vitro antitumor investigation shows that LZn is a patent inhibitor of tumor cell growth with IC50 values below 10 micromolar.  相似文献   

17.
New zinc(II) and copper(II) complexes with a reduced Schiff-base ligand derived from D,L-selenomethionine and salicylaldehyde have been synthesized and characterized by elemental analysis, magnetic susceptibility, IR, and NMR measurements. The single-crystal X-ray structure of the Cu(II) complex reveals that this complex is a carboxylate-bridged dimer of dinuclear copper(II) subunits and all metal centers are five-coordinate with O4N donor sets in distorted square-pyramidal geometries. The Cu(II) complex consists of a 1-D coordination polymer.  相似文献   

18.
We report the assembly of supramolecular boxes and coordination polymers based on a rigid bis‐zinc(II)‐salphen complex and various ditopic nitrogen ligands. The use of the bis‐zinc(II)‐salphen building block in combination with small ditopic nitrogen ligands gave organic coordination polymers both in solution as well as in the solid state. Molecular modeling shows that supramolecular boxes with small internal cavities can be formed. However, the inability to accommodate solvent molecules (such as toluene) in these cavities explains why coordination polymers are prevailing over well‐defined boxes, as it would lead to an energetically unfavorable vacuum. In contrast, for relatively longer ditopic nitrogen ligands, we observed the selective formation of supramolecular box assemblies in all cases studied. The approach can be easily extended to chiral analogues by using chiral ditopic nitrogen ligands.  相似文献   

19.
We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)‐sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET‐conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)‐enhanced emission of 3 and 4 in lysosomes. It was further shown using two‐color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino‐functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells.  相似文献   

20.
Rings of porphyrins mimic natural light-harvesting chlorophyll arrays and offer insights into electronic delocalization, providing a motivation for creating larger nanorings with closely spaced porphyrin units. Here, we demonstrate the first synthesis of a macrocycle consisting entirely of 5,15-linked porphyrins. This porphyrin octadecamer was constructed using a covalent six-armed template, made by cobalt-catalyzed cyclotrimerization of an H-shaped tolan with porphyrin trimer ends. The porphyrins around the circumference of the nanoring were linked together by intramolecular oxidative meso-meso coupling and partial β-β fusion, to give a nanoring consisting of six edge-fused zinc(II) porphyrin dimer units and six un-fused nickel(II) porphyrins. STM imaging on a gold surface confirms the size and shape of the spoked 18-porphyrin nanoring (calculated diameter: 4.7 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号