首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Many real life problems can be modeled as nonlinear discrete optimization problems. Such problems often have multiple local minima and thus require global optimization methods. Due to high complexity of these problems, heuristic based global optimization techniques are usually required when solving large scale discrete optimization or mixed discrete optimization problems. One of the more recent global optimization tools is known as the discrete filled function method. Nine variations of the discrete filled function method in literature are identified and a review on theoretical properties of each method is given. Some of the most promising filled functions are tested on various benchmark problems. Numerical results are given for comparison.  相似文献   

2.
We present new theoretical convergence results on the cross-entropy (CE) method for discrete optimization. We show that a popular implementation of the method converges, and finds an optimal solution with probability arbitrarily close to 1. We also give conditions under which an optimal solution is generated eventually with probability 1.  相似文献   

3.
Solving a stochastic optimization problem often involves performing repeated noisy function evaluations at points encountered during the algorithm. Recently, a continuous optimization framework for executing a single observation per search point was shown to exhibit a martingale property so that associated estimation errors are guaranteed to converge to zero. We generalize this martingale single observation approach to problems with mixed discrete–continuous variables. We establish mild regularity conditions for this class of algorithms to converge to a global optimum.  相似文献   

4.
A novel method, entitled the discrete global descent method, is developed in this paper to solve discrete global optimization problems and nonlinear integer programming problems. This method moves from one discrete minimizer of the objective function f to another better one at each iteration with the help of an auxiliary function, entitled the discrete global descent function. The discrete global descent function guarantees that its discrete minimizers coincide with the better discrete minimizers of f under some standard assumptions. This property also ensures that a better discrete minimizer of f can be found by some classical local search methods. Numerical experiments on several test problems with up to 100 integer variables and up to 1.38 × 10104 feasible points have demonstrated the applicability and efficiency of the proposed method.  相似文献   

5.
Many polynomial and discrete optimization problems can be reduced to multiextremal quadratic type models of nonlinear programming. For solving these problems one may use Lagrangian bounds in combination with branch and bound techniques. The Lagrangian bounds may be improved for some important examples by adding in a model the so-called superfluous quadratic constraints which modify Lagrangian bounds. Problems of finding Lagrangian bounds as a rule can be reduced to minimization of nonsmooth convex functions and may be successively solved by modern methods of nondifferentiable optimization. This approach is illustrated by examples of solving polynomial-type problems and some discrete optimization problems on graphs.  相似文献   

6.
利用Gertewitz泛函研究向量优化问题的一类非线性标量化问题. 证明了向量优化问题的(C, \varepsilon)-弱有效解或(C, \varepsilon)-有效解与标量化问题的近似解或严格近似解间的等价关系, 并估计了标量化问题的近似解.  相似文献   

7.
Levitin–Polyak well-posedness of constrained vector optimization problems   总被引:2,自引:0,他引:2  
In this paper, we consider Levitin–Polyak type well-posedness for a general constrained vector optimization problem. We introduce several types of (generalized) Levitin–Polyak well-posednesses. Criteria and characterizations for these types of well-posednesses are given. Relations among these types of well-posedness are investigated. Finally, we consider convergence of a class of penalty methods under the assumption of a type of generalized Levitin–Polyak well-posedness.  相似文献   

8.
The aim of this paper is to propose a variational piecewise constant level set method for solving elliptic shape and topology optimization problems. The original model is approximated by a two-phase optimal shape design problem by the ersatz material approach. Under the piecewise constant level set framework, we first reformulate the two-phase design problem to be a new constrained optimization problem with respect to the piecewise constant level set function. Then we solve it by the projection Lagrangian method. A gradient-type iterative algorithm is presented. Comparisons between our numerical results and those obtained by level set approaches show the effectiveness, accuracy and efficiency of our algorithm.  相似文献   

9.
An approach to solving optimization problems with fuzzy coefficients is described. It consists in formulating and analyzing one and the same problem within the framework of mutually related models by constructing equivalent analogs with fuzzy coefficients in objective functions alone. Since the approach is applied within the context of fuzzy discrete optimization problems, modified algorithms of discrete optimization are discussed. These algorithms are based on a combination of formal and heuristic procedures and allow one to obtain quasi-optimal solutions after a small number of steps, thus overcoming the computational complexity posed by the NP-completeness of discrete optimization problems. The subsequent contraction of the decision uncertainty regions is associated with reduction of the problem to multiobjective decision making in a fuzzy environment using techniques based on fuzzy preference relations. The results of the paper are of a universal character and are already being used to solve practical problems in several fields.  相似文献   

10.
In this paper, a real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep, M. Thakur, A new crossover operator for real coded genetic algorithms, Applied Mathematics and Computation 188 (2007) 895-912; K. Deep, M. Thakur, A new mutation operator for real coded genetic algorithms, Applied Mathematics and Computation 193 (2007) 211-230]. The algorithm incorporates a special truncation procedure to handle integer restrictions on decision variables along with a parameter free penalty approach for handling constraints. Performance of the algorithm is tested on a set of twenty test problems selected from different sources in literature, and compared with the performance of an earlier application of genetic algorithm and also with random search based algorithm, RST2ANU, incorporating annealing concept. The proposed MI-LXPM outperforms both the algorithms in most of the cases which are considered.  相似文献   

11.
In this work we characterize objective functions which do not change the set of efficient solutions (weakly efficient solutions, properly efficient solutions). Necessary and sufficient conditions for an objective function to be weakly nonessential (properly nonessential) are presented. We establish relations between weakly nonessential, properly nonessential and nonessential functions.  相似文献   

12.
Engineering optimization problems are multicriteria with continuous, discrete, and mixed design variables. Correct definition of the feasible solution set is of fundamental importance in these problems. It is quite difficult for the expert to define this set. For this reason, the results of searching for optimal solutions frequently have no practical meaning. Furthermore, correct definition of this set makes it possible to significantly reduce the time of searching for optimal solutions. This paper describes construction of the feasible solution set with continuous, discrete, and mixed design variables on the basis of Parameter Space Investigation (PSI) method.  相似文献   

13.
非凸极小极大问题是近期国际上优化与机器学习、信号处理等交叉领域的一个重要研究前沿和热点,包括对抗学习、强化学习、分布式非凸优化等前沿研究方向的一些关键科学问题都归结为该类问题。国际上凸-凹极小极大问题的研究已取得很好的成果,但非凸极小极大问题不同于凸-凹极小极大问题,是有其自身结构的非凸非光滑优化问题,理论研究和求解难度都更具挑战性,一般都是NP-难的。重点介绍非凸极小极大问题的优化算法和复杂度分析方面的最新进展。  相似文献   

14.
We study proximal level methods for convex optimization that use projections onto successive approximations of level sets of the objective corresponding to estimates of the optimal value. We show that they enjoy almost optimal efficiency estimates. We give extensions for solving convex constrained problems, convex-concave saddle-point problems and variational inequalities with monotone operators. We present several variants, establish their efficiency estimates, and discuss possible implementations. In particular, our methods require bounded storage in contrast to the original level methods of Lemaréchal, Nemirovskii and Nesterov.This research was supported by the Polish Academy of Sciences.Supported by a grant from the French Ministry of Research and Technology.  相似文献   

15.
In this work, a differentiable multiobjective optimization problem with generalized cone constraints is considered, and the equivalence of weak Pareto solutions for the problem and for its η-approximated problem is established under suitable conditions. Two existence theorems for weak Pareto solutions for this kind of multiobjective optimization problem are proved by using a Karush–Kuhn–Tucker type optimality condition and the F-KKM theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号