首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以钛酸四正丁酯和硝酸镧为原料, 以P123为模板剂,采用模板法合成了La掺杂型介孔TiO2光催化剂, 借助TGA-DSC、BET、XRD及UV-Vis等测试手段对样品进行了表征,并以苯酚为模型污染物考察了镧掺杂量对样品光催化活性的影响.结果表明: La掺杂介孔TiO2光催化剂孔径分布较均匀(~10 nm),比表面积可达165 m2/g.与纯介孔TiO2相比,经掺杂改性后的样品在紫外光区及可见光区的吸收显著增强,对光具有更高的利用率,La掺杂可显著提高介孔TiO2的光催化活性.  相似文献   

2.
Praseodymium and nitrogen co-doped titania (Pr/N-TiO2) photocatalysts, which could degrade Bisphenol A (BPA) under visible light irradiation, were prepared by the modified sol-gel process. Tetrabutyl titanate, urea and praseodymium nitrate were used as the sources of titanium, nitrogen and praseodymium, respectively. The resulting materials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis absorbance spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherm and Fourier transform infrared spectra (FTIR). It was found that Pr doping inhibited the growth of crystalline size and the transformation from anatase to rutile. The degradation of BPA under visible light illumination was taken as probe reaction to evaluate the photo-activity of the co-doped photocatalyst. In our experiments, the optimal dopant amount of Pr was 1.2 mol% and the calcination temperature was 500 °C for the best photocatalytic activity. Pr/N-TiO2 samples exhibited enhanced visible-light photocatalytic activity compared to N-TiO2, undoped TiO2 and commercial P25. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. Pr doping could slow the radiative recombination of photogenerated electrons and holes in TiO2. The improvement of photocatalytic activity was ascribed to the synergistic effects of nitrogen and Pr co-doping.  相似文献   

3.
In this work photocatalytic properties of TiO2 thin films doped with different amount of Tb have been described. Thin films were prepared by high energy reactive magnetron sputtering process. Comparable photocatalytic activity has been found for all doped TiO2 thin films, while different amounts of Tb dopant (0.4 and 2.6 at. %) results in either an anatase or rutile structure. It was found that the terbium dopant incorporated into TiO2 was also responsible for the amount of hydroxyl groups and water particles adsorbed on the thin film surfaces and thus photocatalytic activity was few times higher in comparison with results collected for undoped TiO2 thin films.  相似文献   

4.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

5.
The Cu-TiO2 nanoparticles with different Cu dopant content were prepared by sol-gel method. The structure of the as-prepared catalysts and the surface species of Cu-TiO2 were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS). The relationship between the photocatalytic activity and the surface species of Cu-TiO2 was revealed via the measurement of surface photovoltage spectroscopy (SPS) as well as the degradation of the rhodamine B (RhB). The experimental results suggest that the Cu-TiO2 photocatalysts with appropriate content of Cu (about 0.06 mol%) possess abundant electronic trap, which effectively inhibits the recombination of photoinduced charge carriers, improving the photocatalytic activity of TiO2. While at high Cu dopant region (>0.06 mol%), the excessive oxygen vacancies and Cu species can become the recombination centers of photoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration, excessive P-type Cu2O can cover the surface of TiO2, which leads to decrease in the photocatalytic activity of photocatalyst. The photocatalytic experimental results are in good agreement with the conclusions of SPS measurements, indicating that there is a close relationship between the photocatalytic activity and the intensity of SPS spectra.  相似文献   

6.
Abstract

Titanium dioxide (TiO2) was doped with a nonmetalic element, boron (B), and the boron doped TiO2 (B-TiO2) was combined with polyaniline (Pani) through an in-situ polymerization technique. The photocatalytic activity of the prepared samples was monitored by the degradation of methylene blue under UV light irradiation. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to reveal the effect of boron doping on the crystalline and chemical structure of the photocatalyst, respectively. The morphological and elemental compositional characteristics of the samples were evaluated using field emission scaning electron microscopy (FE-SEM) and energy dispersive x-ray analysis. The optical band gap energy of the prepared samples was obtained by UV-Visible (UV-Vis) spectroscopy. B-TiO2 exhibited enhanced photocatalytic performance compared to the undoped photocatalyst. Furthermore, compared with TiO2 and B-TiO2, Pani/B-TiO2 displayed superior photocatalytic activity. The composite achieved almost 26% methylene blue degradation within 150?minutes. Although the boron doping enhanced the crystallinity of TiO2 slightly, it did not affect the morphology. FTIR confirmed the presence of tri-coordinated interstitial boron in the Ti–O–B bonds. The UV-Vis spectra displayed a red shift with the incorporation of the boron atoms. The incorporation of the boron atoms in the TiO2 crystal structure are suggested to promote the separation of the photoinduced electron-hole pairs, a possible reason for the enhanced photocatalytic activity. B-TiO2 and its composite with polyaniline could be considered as a promising photocatalyst to remove organic dyes from the wastewater.  相似文献   

7.
Natural zeolite supported Fe3+-TiO2 photocatalysts were synthesized for the sake of improving the recovery and photocatalytic efficiency of TiO2. The as-prepared materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Methyl orange was used to estimate the photocatalytic activity of the samples. The results showed that zeolite inhibited the growth of TiO2 crystallite sizes. The Fe3+ concentration played an important role on the microstructure and photocatalytic activity of the samples. The iron ions could diffuse into TiO2 lattice to the form Fe-O-Ti bond and gave TiO2 the capacity to absorb light at lower energy levels. The photocatalytic activity of the samples could be enhanced as appropriate dosages of Fe3+ were doped.  相似文献   

8.
Titanium dioxide (TiO2) nanoparticles co-doped with N and Fe were prepared via modified sol-gel process. The products were characterized by transmission electron microscopy (TEM), N2 adsorption, X-ray diffraction (XRD), Raman spectroscopy, UV-vis spectroscopy, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). It is shown that the prepared TiO2 particles were less than 10 nm with narrow particle size distribution. The addition of MCM-41 caused the formation of Ti-O-Si bond which fixed the TiO2 on MCM-41 surface, thus restricted the agglomeration and growth of TiO2 particles. The photocatalytic performance in the degradation of methylene blue showed that N, Fe co-doped TiO2 exhibited much higher photocatalytic activity than doped sample with nitrogen or Fe3+ alone under both UV and visible light. N, Fe co-doping decreased the loss of doping N during the degradation reaction, thus increased the photocatalytic stability. It was also found that the nitridation time had significant influence on the photocatalytic activity of prepared TiO2 catalysts.  相似文献   

9.
In this paper, pure and Zn‐doped TiO2 nanoparticles (NPs) with various content of Zn were prepared by a sol–hydrothermal method and were employed as active substrates for surface‐enhanced Raman scattering (SERS). On the 3% Zn‐doped TiO2 substrate, 4‐mercaptobenzoic acid(4‐MBA) molecules exhibit a higher SERS intensity by a factor of 6, as compared with the native enhancement of 4‐MBA adsorbed on undoped TiO2 NPs. Moreover, the higher SERS activity was still observed on the 3% Zn‐doped TiO2 NPs at temperature even up to 125 °C. These results indicate that an appropriate amount of Zn doping can improve the SERS performances of TiO2 SERS‐active substrates. The introduction of Zn dopant can enrich the surface states (defects) of TiO2 and improve the separation efficiency of photo‐generated charge carriers (electrons and holes) in TiO2, according to measurements of X‐ray diffraction, UV‐visible diffuse reflectance spectroscopy, and photoluminescence, which are responsible for the influence of Zn dopant on the improved SERS performances of TiO2 NPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The electronic structures of undoped anatase and anatase doped with carbon and vanadium have been calculated using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) method in the LSDA + U approximation. It has been shown that the doping of TiO2 leads to the formation of narrow bands of the C and Vimpurity states in the band gap. The calculations of the imaginary part of the dielectric function have made it possible to estimate the intensity of the optical absorption. It has been established that the doping with vanadium and carbon leads to optical absorption in the visible range and to an increase in the absorption in the ultraviolet range up to 4 eV. This should result in an increase in the photocatalytic activity on the surface of the doped anatase. The experimental determination of the photocatalytic activity of whiskers of the anatase doped with carbon and vanadium in the reaction of hydroquinone oxidation has confirmed the increase in the activity of the doped materials under exposure to ultraviolet, visible, and blue light. The phenomenon of dark catalysis in the anatase doped with carbon and vanadium has been interpreted within the concept of low-energy electronic excitatio ns between the impurity levels of carbon.  相似文献   

11.
The present work deals with the synthesis of titanium dioxide nanoparticles doped with Fe and Ce using sonochemical approach and its comparison with the conventional doping method. The prepared samples have been characterized using X-ray diffraction (XRD), FTIR, transmission electron microscopy (TEM) and UV–visible spectra (UV–vis). The effectiveness of the synthesized catalyst for the photocatalytic degradation of crystal violet dye has also been investigated considering crystal violet degradation as the model reaction. It has been observed that the catalysts prepared by sonochemical method exhibit higher photocatalytic activity as compared to the catalysts prepared by the conventional methods. Also the Ce-doped TiO2 exhibits maximum photocatalytic activity followed by Fe-doped TiO2 and the least activity was observed for only TiO2. The presence of Fe and Ce in the TiO2 structure results in a significant absorption shift towards the visible region. Detailed investigations on the degradation indicated that an optimal dosage with 0.8 mol% doping of Ce and 1.2 mol% doping of Fe in TiO2 results in higher extents of degradation. Kinetic studies also established that the photocatalytic degradation followed the pseudo first-order reaction kinetics. Overall it has been established that ultrasound assisted synthesis of doped photocatalyst significantly enhances the photocatalytic activity.  相似文献   

12.
The N-doped anatase TiO2 photocatalysts were prepared via solvothermal and ethylenediamine reflux treatment, followed by the sequential calcination in air and NH3/N2 atmosphere. The resulting photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV-vis diffuse reflectance spectra. The results revealed that the prepared N-doped anatase TiO2 had characteristics of small crystallite size, large surface area, high crystallinity and visible light response. The prepared N-doped anatase TiO2 photocatalysts showed much higher photocatalytic activity than N-doped Degussa P25 for the degradation of phenol under both ultraviolet and visible light irradiation, owing to more highly oxidizing hydroxyl radical which was the main oxidative species responsible for the degradation of phenol.  相似文献   

13.
Undoped and Zn-doped TiO2 nanoparticles were synthesized by the sol gel method. The dopant (Zn) was taken at 0.1, 0.2, 0.5, 0.7, and 1.0 mol%. The initial precursors were titanium tetraisopropoxide and zinc acetate. The samples were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and UV–vis diffuse reflectance. The photocatalytic activity of the prepared nanoparticles was studied by observing their role in degradation of two azo dyes, i.e., Eriochrome Black T and Methyl Red under UV–visible light. The results revealed that Zn-doped TiO2 nanoparticles exhibited better degradation as compared to undoped TiO2 nanoparticles. In this study, 0.7 mol% Zn-doped TiO2 showed highest photocatalytic activity. Doping of Zn allowed better separation of electron–hole pairs which results in increased oxidation and reduction reactions.  相似文献   

14.
Visible-light-driven TiO2-based catalysts for the degradation of pollutants have become the focus of attention. In the present work, iodine-doped titania photocatalysts (I-TiO2) were improved by doping with gallium (Ga,I-TiO2) and the resulting physicochemical properties and photocatalytic activity were investigated. The structural properties of the catalysts were determined by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis and transmission electron microscopy. We found that Ga probably enters the TiO2 framework for doping levels <0.5 mol%. A further increase in Ga content probably leads to dispersal of excess Ga on the TiO2 surface. The photocatalytic activity of Ga,I-TiO2 catalysts was evaluated using 2-chlorophenol (2-CP) as a model compound under visible and UV-vis light irradiation. The results indicate that 0.5 mol% Ga loading and calcination at 400 °C represent optimal conditions in the calcining temperature range 400-600 °C and with doping levels from 0.1% to 1 mol%. The effective enhancement of 2-CP degradation might be attributed to the formation of oxygen vacancies by Ga doping, which could decrease the recombination of electron-hole pairs.  相似文献   

15.
TiN/TiO2 nanoparticle photocatalyst was prepared by ball milling of TiO2 in H2O solution doped with TiN. The photocatalyst was characterized by UV–Vis diffuse reflection spectroscopy, X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Based on the results of the characterization, the mechanism of the increase in photocatalytic activity was investigated. The results show that when the amount of doped TiN is 0.15 wt%, the photocatalytic activity of the TiN/TiO2 is at its peak. Compared with TiO2, the photoabsorption wavelength range of the TiN/TiO2 photocatalyst red-shifts about 30 nm, and the photoabsorption intensity increases as well. The photocatalytic activities of the photocatalyst are higher than that of TiO2 under UV and visible light irradiation. The increase of surface Ti3+ reactive center and the extension of the photoabsorption wavelength are the main factors for the increase in the photocatalytic activity of the TiN/TiO2. Doped TiN neither changes the TiO2 crystal phase nor creates new crystal phase by ball milling.  相似文献   

16.
Copper-doped titania with variable Cu/Ti ratios have been prepared via a simple aqueous-phase method at 85 °C. The obtained products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectra analysis. The photocatalytic properties of the products were tested by photocatalytic degradation of aqueous brilliant red X-3B solution. The results showed that the sample with 2% copper doping has the best photocatalytic activity, which is 3 times that of undoped rutile titania. The effect of the doped copper on the structure and property of TiO2 has also been discussed.  相似文献   

17.
The Br-doped hollow TiO2 photocatalysts were prepared by a simple hydrothermal process on the carbon sphere template following with calcination at 400 °C. The structure and properties of photocatalysts were characterized by X-ray diffraction, Raman spectrum, scanning electron microscope, transmission electron microscopy, N2 desorption–adsorption, UV–Vis spectroscopy, and X-ray photoelectron spectroscopy. The TiO2 hollow spheres are in diameter of 500 nm with shell thickness of 50 nm. The shell is composed of small anatase nanoparticles with size of about 10 nm. The TiO2 hollow spheres exhibit high crystalline and high surface area of 89.208 m2/g. With increasing content of Br doping, the band gap of TiO2 hollow spheres decreased from 2.85 to 1.75 eV. The formation of impurity band in the band gap would narrow the band gap and result in the red shift of absorption edge from 395 to 517 nm, which further enhances the photocatalytic activity. The appropriate Br doping improves the photocatlytic activity significantly. The TiO2 hollow spheres with 1.55% Br doping (0.5Br-TiO2) exhibit the highest photocatalytic activity under full light. More than 98% of RhB, MO, and MB can be photodegraded using 0.5Br-TiO2 with concentration of 10 mg/L in 40, 30, and 30 min, respectively. The degradation rate of Br-doped photocatalysts was 40% faster than undoped ones.
Graphical abstract
  相似文献   

18.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   

19.
Nitrogen doped TiO2 nanoparticles decorated on graphene sheets are successfully synthesized by a low-temperature hydrothermal method. The resulting GR-N/TiO2 composites are characterized by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-Ray photoelectron spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The optical properties are studied using UV–visible diffuse reflectance spectroscopy (DRS), which confirms that the spectral responses of the composite catalysts are extended to the visible-light region and show a significant reduction in band gap energy from 3.18 to 2.64 eV. Photoluminescence emission spectra verify that GR-N/TiO2 composites possess better charge separation capability than pure TiO2. The photocatalytic activity is tested by degradation of methyl orange (MO) dye under visible light irradiation. The results demonstrate that GR-N/TiO2 composites can effectively photodegrade MO, showing an impressive photocatalytic enhancement over pure TiO2. The dramatically enhanced activity of composite photocatalysts can be attributed to great adsorption of dyes, enhanced visible light absorption and efficient charge separation and transfer processes. This work may provide new insights into the design of novel composite photocatalysts system with efficient visible light activity.  相似文献   

20.
高攀  吴晶  柳清菊  周文芳 《中国物理 B》2010,19(8):87103-087103
The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号