首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biocompatible hybrid particles composed of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and ferrite (γ-Fe2O3 and Fe3O4) were synthesized using a two-step procedure. First, the ferrite particles were synthesized by co-precipitation. Second, the suspension, which was composed of ferrite particles by a co-precipitation method, Ca(NO3)2, and H3PO4 aqueous solution with surfactant, was nebulized into mist ultrasonically. Then the mist was pyrolyzed at 1000 °C to synthesize HAp-ferrite hybrid particles. The molar ratio of Fe ion and HAp was (Fe2+ and Fe3+)/HAp=6. The synthesized hybrid particle was round and dimpled, and the average diameter of a secondary particle was 740 nm. The cross section of the synthesized hybrid particles revealed two phases: HAp and ferrite. The ferrite was coated with HAp. The synthesized hybrid particles show a saturation magnetization of 11.8 emu/g. The net saturation magnetization of the ferrite component was calculated as 32.5 emu/g. The temperature increase in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 °C with 3.4 g (the ferrite component was 1.0 g). These results show that synthesized hybrid particles are biocompatible and might be useful for magnetic transport and hyperthermia studies.  相似文献   

2.
Tunable polymer wavelength filters are demonstrated using a silicon-nitride grating which gives high refractive index contrast with polymers. The polymer waveguides are defined using direct patterning of a liquid-state UV-curable polymer by proximate-contact lithography technique. The wavelength filter exhibits a narrow bandwidth of less than 1.0 nm and a transmission dip of more than −15 dB. The peak wavelength is shifted over 10 nm in the temperature range of 25-70 °C and the thermal tuning efficiency is −0.212 nm/°C.  相似文献   

3.
A 32 × 32 arrayed waveguide grating (AWG) multiplexer operating around the 1550 nm wavelength has been designed and fabricated using highly fluorinated polyethers. The propagation loss of the slab waveguide is about 0.3 dB/cm at 1550 nm wavelength. The channel spacing of the AWG multiplexer is 0.8 nm (100 GHz). The insertion loss of the multiplexer is 10.3-15.3 dB and the crosstalk is less than −20 dB.  相似文献   

4.
A convenient and non-TOP-based route for the synthesis of core-shell CdSe/CdS quantum dots (QDs) is developed for the first time. Simple reagents, such as cadmium oxide, selenium powder, sodium sulfide, paraffin and oleic acid with obvious advantages are used to replace organometallics. This simple route allows the preparation of a series of core-shell CdSe/CdS QDs emitting in a wide wavelength range (from 510 to 615 nm). After passivation of CdSe by CdS shell using sodium sulfide as the source of sulfur at 80 °C, the quantum yields (QYs) are improved from 15-30% to 35-50% and remained stable at least for 4 months. A narrow bandwidth (FWHM<50 nm) indicates that the as-prepared QDs have uniform size distribution, desirable dispersibility and good fluorescence properties. The whole procedure can be carried out either open to air or under nitrogen atmosphere, which is simpler, greener and cheaper as compared with TOP-based route.  相似文献   

5.
ZrO2 thin films were deposited at various oxygen partial pressures (2.0 × 10−5-3.5 × 10−1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 × 10−5-3.5 × 10−1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 × 10−5 mbar is 1.3 nm while it is 3.2 nm at 3.5 × 10−1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 × 10−5 to 3.5 × 10−1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.  相似文献   

6.
ZnO-SDS hybrid thin films were grown on ITO glass using the potentiostatic electrodeposition route from aqueous zinc nitrate solution containing surfactant sodium dodecyle sulfanate (SDS). The electrochemical process of the hybrid films was analyzed by comparing the cyclic voltammetric curve and current-time curve with those of pure ZnO film. Results showed that the addition of a small amount of SDS could decrease the deposition current density, and inhibit the growth of ZnO crystals significantly. The hybrid films electrodeposited at −0.9 V for 30 min exhibited smooth and platelet-like morphology, with the film thickness of about 110 nm. The well-defined ZnO-SDS lamellar structures could be clearly observed, with two interlayer spaces of 35.1 and 30.9 Å, respectively. Optical analysis showed that the hybrid films had good optical quality, and exhibited the fundamental absorption edge of ZnO at 380 nm.  相似文献   

7.
A new type of curvature sensor comprises a stub of multi-mode fiber and an up-taper is proposed and demonstrated experimentally. The whole fabrication process is quite simple and the sensor head is cost effective. Measurement results show that it has a maximum curvature sensitivity of −61.877 nm/m−1 at 1.1718 m−1 (the highest value of reported papers among in-fiber Mach–Zehnder interferometers) and −9.2115 nm/m−1 from 0.865 m−1 to 1.1172 m−1. Temperature sensitivity of 89.01 pm/°C within the range of 20–80 °C has also been achieved, which implies the possibility for measurement of temperature.  相似文献   

8.
The deposition of amorphous indium zinc oxide (IZO) thin films on glass substrates with n-type carrier concentrations between 1014 and 3 × 1020 cm−3 by sputtering from single targets near room temperature was investigated as a function of power and process pressure. The resistivity of the films with In/Zn of ∼0.7 could be controlled between 5 × 10−3 and 104 Ω cm by varying the power during deposition. The corresponding electron mobilities were 4-18 cm2 V−1 s−1.The surface root-mean-square roughness was <1 nm under all conditions for film thicknesses of 200 nm. Thin film transistors with 1 μm gate length were fabricated on these IZO layers, showing enhancement mode operation with good pitch-off characteristics, threshold voltage 2.5 V and a maximum transconductance of 6 mS/mm. These films look promising for transparent thin film transistor applications.  相似文献   

9.
Chemical composition of ZrC thin films grown by pulsed laser deposition   总被引:1,自引:0,他引:1  
ZrC films were grown on (1 0 0) Si substrates by the pulsed laser deposition (PLD) technique using a KrF excimer laser working at 40 Hz. The nominal substrate temperature during depositions was set at 300 °C and the cooling rate was 5 °C/min. X-ray diffraction investigations showed that films deposited under residual vacuum or under 2 × 10−3 Pa of CH4 atmosphere were crystalline, exhibiting a (2 0 0)-axis texture, while those deposited under 2 × 10−2 Pa of CH4 atmosphere were found to be equiaxed and with smaller grain size. The surface elemental composition of as-deposited films, analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), showed the usual high oxygen contamination of carbides. Once the topmost 2-4 nm region was removed, the oxygen concentration rapidly decreased, down to around 3-8% only in bulk. Simulations of the X-ray reflectivity (XRR) curves indicated a smooth surface morphology, with roughness values below 1 nm (rms) and films density values of around 6.30-6.45 g/cm3, very close to the bulk density. The growth rate, estimated from thickness measurements by XRR was around 8.25 nm/min. Nanoindentation results showed for the best quality ZrC films a hardness of 27.6 GPa and a reduced modulus of 228 GPa.  相似文献   

10.
This paper presents a theoretical design of highly nonlinear microstructure optical fiber with dispersion-flat characteristics. The APSS™ 2.3 software based on the finite difference method with perfectly matched boundary conditions is used to simulate the properties of the proposed microstructure optical fiber. According to simulation, the proposed fiber warrants a high nonlinear coefficient of the order 41 W−1 km−1 and a low dispersion of 0.25 ps/nm/km at 1550 nm wavelength. It assumes a dispersion-flat characteristic of 0 ± 0.50 ps/nm/km in a 1450-1620 nm wavelength range centering 1550 nm wavelength with a modest number of design parameters.  相似文献   

11.
Transparent and conducting ITO/Au/ITO multilayered films were deposited without intentional substrate heating on polycarbonate (PC) substrate using a magnetron sputtering process. The thickness of ITO, Au and ITO metal films in the multilayered structure was constant at 50, 10 and 40 nm, respectively.Although the substrate temperature was kept constant at 70 °C, ITO/Au/ITO films were polycrystalline with an (1 1 0) X-ray diffraction peak, while single ITO films were amorphous. Surface roughness analysis indicated ITO films had a higher average roughness of 1.76 nm, than the ITO/Au/ITO film roughness of 0.51 nm. The optoelectrical properties of the ITO/Au/ITO films were dependent on the Au thin film, which affected the ITO film crystallinity. ITO/Au/ITO films on PC substrates were developed with a resistivity as low as 5.6 × 10−5 Ω cm and a high optical transmittance of 71.7%.  相似文献   

12.
13.
The optoelectronic integrated transmitter and receiver for 650 nm plastic optical fiber (POF) communication applications realized in 0.5 μm BCD (Biplor, CMOS and DMOS) process is first described in this paper. The 650 nm resonant cavity light emitting diode (RCLED) is used as light source. It is first proposed for optoelectronic integration of the transmitter by bonding RCLED to the driver chip. Temperature compensation technology is employed in the driver circuit to compensate for the modulation current. In the monolithic optoelectronic integrated receiver, large area multi-finger PIN photodetector (PD) that is compatible with standard IC process, transimpedance amplifier and post amplifier are presented. Measurement results show that the responsivity and capacitance of PD is 0.25 A/W and 5 pF, respectively. The sensitivity of receiver is −14.6 dBm at 180 Mb/s and BER is less than 10−9 for 650 nm input light by POF. A clear eye diagram is demonstrated for 180 Mb/s PRBS. These indicate that optoelectronic integrated chips can be employed in high-speed POF-based Fast Ethernet systems for broadband access network applications.  相似文献   

14.
The present paper demonstrates the preparation and characterization of SnO2 semiconductor quantum dots. Extremely small ∼1.1 and ∼1.4 nm SnO2 samples were prepared by microwave assisted technique with a frequency of 2450 MHz. Based on XRD analysis, the phase, crystal structure and purity of the SnO2 samples are determined. UV-vis measurements showed that, for the both size of SnO2 samples, excitonic peaks are obtained at ∼238 and ∼245 nm corresponding to ∼1.1 nm (sample 1) and ∼1.4 nm (sample 2) sizes, respectively. STM analysis showed that, the quantum dots are spherical shaped and highly monodispersed. At first, the linear absorption coefficients for two different sizes of SnO2 quantum dots were measured by employing a CW He-Ne laser at 632.8 nm and were obtained about 1.385 and 4.175 cm−1, respectively. Furthermore, the nonlinear refractive index, n2, and nonlinear absorption coefficient, β, were measured using close and open aperture Z-scan respectively using the same laser. As quantum dots have strong absorption coefficient to obtain purely effective n2, we divided the closed aperture transmittance by the corresponding open aperture in the same incident beam intensity. The nonlinear refraction indices of these quantum dots were measured in order of 10−7 (cm2/W) with negative sign and the nonlinear absorption coefficients were obtained for both in order of 10−3 (cm/W) with positive sign.  相似文献   

15.
A type of compact temperature sensor based on microfiber knot resonator is proposed and demonstrated experimentally. The microfiber knot, which is assembled by two fiber probes, is placed on a plate glass substrate and coated with low-index polymer to keep the system robust. Sensitivities of this kind of temperature sensor as 0.27 nm/°C in heating process (when temperature ranges from 28 to 140 °C) and −0.28 nm/°C in cooling process (when temperature ranges from 135 to 25 °C) are obtained. Temperature resolution of 0.5 °C is demonstrated and higher resolution is predicted with a high-resolution spectrometer.  相似文献   

16.
Optical multimode fibers are applied in materials processing (e.g. automotive industry), defense, aviation technology, medicine and biotechnology. One challenging task concerning the production of multimode fibers is the enhancement of laser-induced damage thresholds. A higher damage threshold enables a higher transmitted average power at a given fiber diameter or the same power inside a thinner fiber to obtain smaller focus spots.In principle, different material parameters affect the damage threshold. Besides the quality of the preform bulk material itself, the drawing process during the production of the fiber and the preparation of the fiber end surfaces influence the resistance. Therefore, the change of the laser-induced damage threshold of preform materials was investigated in dependence on a varying thermal treatment and preparation procedure.Single and multi-pulse laser-induced damage thresholds of preforms (F300, Heraeus) were measured using a Q-switched Nd:YAG laser at 1064 nm wavelength emitting pulses with a duration of 15 ns, a pulse energy of 12 mJ and a repetition rate of 10 Hz. The temporal and spatial shape of the laser pulses were controlled accurately.Laser-induced damage thresholds in a range from 150 J cm−2 to 350 J cm−2 were determined depending on the number of pulses applied to the same spot, the thermal history and the polishing quality of the samples, respectively.  相似文献   

17.
The role of pH variation on the growth of zinc oxide nanostructures   总被引:1,自引:0,他引:1  
In this paper we present a systematic study on the morphological variation of ZnO nanostructure by varying the pH of precursor solution via solution method. Zinc acetate dihydrate and sodium hydroxide were used as a precursor, which was refluxed at 90 °C for an hour. The pH of the precursor solution (zinc acetate di hydrate) was increased from 6 to 12 by the controlled addition of sodium hydroxide (NaOH). Morphology of ZnO nanorods markedly varies from sheet-like (at pH 6) to rod-like structure of zinc oxide (pH 10-12). Diffraction patterns match well with standard ZnO at all pH values. Crystallinity and nanostructures were confirmed by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern, which indicates structure grew along [0 0 0 1] direction with an ideal lattice fringes distance 0.52 nm. FTIR spectroscopic measurement showed a standard peak of zinc oxide at 464 cm−1. Amount of H+ and OH ions are found key to the structure control of studied material, as discussed in the growth mechanism.  相似文献   

18.
Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm−1 (0.01 mA cm−2) and threshold field of 11.35 V μm−1 (1 mA cm−2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.  相似文献   

19.
Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to −4.8 × 10−2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from −0.9 × 10−2 cm/W up to −3.0 × 10−2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.  相似文献   

20.
The SrS:Ce/ZnS:Mn phosphor blends with various combination viz 75:25, 50:50 and 25:75 were assign to generate the white-light emission using near-UV and blue-light emitting diodes (LED) as an excitation source. The SrS:Ce exhibits strong absorption at 427 nm and the corresponding intense emission occurs at 480 and 540 nm due to electron transition from 5d(2D)−4f(2F5/2, 7/2) of Ce3+ ion as a result of spin-orbit coupling. The ZnS:Mn excited under same wavelength shows broad emission band with λmax=582 nm originates due to 3d (4G−6S) level of Mn2+. Photoluminescence studies of phosphor blend excited using near-UV to blue light confirms the emitted radiation varies from cool to warm white light in the range 430-600 nm, applicable to LED lightings. The CIE chromaticity coordinate values measured using SrS:Ce/ZnS:Mn phosphor blend-coated 430 nm LED pumped phosphors in the ratio 75:25, 50:50 and 25:75 are found to be (0.235, 0.125), (0.280, 0.190) and (0.285, 0.250), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号