首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of the incorporation of rare earth elements as additives in Y zeolites is a very interesting field of research, mainly by its potential application as additives in catalytic cracking process. In this work was studied the thermal and structural properties of cerium, holmium and samarium supported on HZSM-12 zeolite. The obtained materials were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), nitrogen adsorption, thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). TG/DSC/DTA analyses showed that the dehydration temperatures of RE/HZSM-12 zeolites (RE=Ce, Ho, Sm) increase in relation to pure HZSM-12. The acid properties were investigated by pyridine thermo desorption via TG. The results showed two events of mass loss attributed to elimination of pyridine adsorbed on the weak+medium acid sites and on the strong acid sites.  相似文献   

2.
New poly(azo) amino-chitosan compounds were obtained from the azo coupling reaction of N-benzyl chitosan and diazonium salts. The thermal behavior of these compounds was studied by thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG), TG coupled with a Fourier-transform infrared, and differential scanning calorimetry (DSC). TG/DTG curves of chitin–chitosan polymer showed two thermal events attributed to water loss and decomposition of the polysaccharide after cross-linking reactions. Thermal analysis of the poly(azo) amino-chitosan compounds showed that the decomposition temperatures decreased when compared to the starting chitin–chitosan and N-benzyl chitosan. DSC results showed an agreement with the TG/DTG analyses. Thermal behavior of poly(azo) amino-chitosans suggest that these compounds could be considered as potential thermal sensors.  相似文献   

3.
The dehydration process of Co(II), Cu(II) and Zn(II) methanesulfonates was studied by thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) techniques in dynamic N2 atmosphere. The TG/DTG curves show that all of them contain four crystallization water molecules, which are lost in two steps. The peak temperature and dehydration enthalpies ΔH were measured from DSC curves for each compound. The effect of procedural variables on the TG and DSC curves was investigated. In this work, the procedural variables included heating rate, Al pan state (unsealed and sealed) and sample mass.  相似文献   

4.
The goal of this research was to develop, fabricate and analyze polymeric nanoparticles for the administration of methotrexate (MTX). Linseed mucilage and chitosan nanoparticles (NPs) were prepared using a slightly modified polyelectrolyte complex (PEC) method. The size, shape, and encapsulation effectiveness of the resultant nanoparticles were measured. MTX release profiles at gastrointestinal pH (1.2 and 7.4) and tumor pH (5.5) were examined to determine the targeted potential of NPs as pH-responsive nanocarriers. Zeta analysis showed that nanoparticles prepared by PEC have a size range of 192.1 nm to 246 nm, and PDI was 0.3 of the optimized formulation, which showed homogenous nature of prepared nanoparticles formulation. The findings demonstrated that NPs have a low polydispersity index and a positive zeta potential (PDI). The in-vitro release of the drug indicated a pH-dependent, sustained drug release up to 24 h. Blank LSMCSNPs had almost no in-vivo cytotoxicity for 14 days, while optimum MTX loaded NPs had strong antitumor effects on HepG2 and MCF-7 cells as measured by the MTT assay. Cell apoptosis induction was also checked and MCF-7 cells treated with MTX-LSMCSNPs had a significantly greater rate of apoptosis (21.2 %) than those treated with MTX alone (14.14 %). The findings show that LSMCSNPs could be a potential delivery mechanism for methotrexate to cancer cells in a secure, steady, and ideally controlled manner to improve therapeutic outcomes.  相似文献   

5.
A nanoparticle insulin delivery system was prepared by complexation of dextran sulfate and chitosan in aqueous solution. Parameters of the formulation such as the final mass of polysaccharides, the mass ratio of the two polysaccharides, pH of polysaccharides solution, and insulin theorical loading were identified as the modulating factors of nanoparticle physical properties. Particles with a mean diameter of 500 nm and a zeta potential of approximately −15 mV were produced under optimal conditions of DS:chitosan mass ratio of 1.5:1 at pH 4.8. Nanoparticles showed spherical shape, uniform size and good shelf-life stability. Polysaccharides complexation was confirmed by differential scanning calorimetry and Fourier transformed infra-red spectroscopy. An association efficiency of 85% was obtained. Insulin release at pH below 5.2 was almost prevented up to 24 h and at pH 6.8 the release was characterized by a controlled profile. This suggests that release of insulin is ruled by a dissociation mechanism and DS/chitosan nanoparticles are pH-sensitive delivery systems. Furthermore, the released insulin entirely maintained its immunogenic bioactivity evaluated by ELISA, confirming that this new formulation shows promising properties towards the development of an oral delivery system for insulin.  相似文献   

6.
Tibolone polymorphic forms I (monoclinic) and II (triclinic) have been prepared by recrystallization from acetone and toluene, respectively, and characterized by different techniques sensitive to changes in solid state, such as polarized light microscopy, X-ray powder diffractometry, thermal analysis (TG/DTG/DSC), and vibrational spectroscopy (FTIR and Raman microscopy). The nonisothermal decomposition kinetics of the obtained polymorphs were studied using thermogravimetry. The activation energies were calculated through the Ozawa’s method for the first step of decomposition, the triclinic form showed a lower E a (91 kJ mol−1) than the monoclinic one (95 kJ mol−1). Furthermore, Raman microscopy and DSC at low heating rates were used to identify and follow the thermal decomposition of the triclinic form, showing the existence of three thermal events before the first mass loss.  相似文献   

7.

Alogliptin (ALG) is a hypoglycemic drug used in diabetes which inhibits the enzyme dipeptidyl peptidase-4 (DPP-4), preventing the degradation of incretins, stimulating insulin secretion. The physicochemical characteristics of ALG were evaluated by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (SEM/EDS). The compatibility studies were carried out between ALG and excipients (physical mixtures, 1:1) using DSC, TG, diffuse reflectance Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and hot-stage microscopy. ALG presented purity near to 99%, melted in the range of 179.4–187.2 °C, followed by decomposition which started in 198.0 °C. SEM/EMS analysis of ALG presented irregular crystals and traces of impurities as copper and lead. DSC investigations obtained by physical mixtures showed minor alterations in the melting ranges of ALG with mannitol, magnesium stearate and commercial tablets. Solubilization of ALG in the fused excipient was observed by hot-stage microscopy between mannitol and ALG, and in tablets. The interaction observed in the mixture with magnesium stearate is due to the melting of the excipient and drug separately, first the excipient and then the drug. FTIR showed additional bands related to the excipients. XRPD proved that ALG has a crystal form and no alterations in the ALG profile were observed after the mixtures. ALG was compatible with all excipients tested. These results were important to understand the characteristics, stability and compatibility of the drug, and proved to be useful in preformulation studies.

  相似文献   

8.
Chitosan nanoparticles were prepared from chitosan of different molecular weight by spray drying. The morphology of the particles was characterized by SEM, and size distribution and zeta potential were determined. The effects of chitosan solution concentration, molecular weight of chitosan, and size of the spray dryer nozzles on average size, size distribution and zeta potential of chitosan nanoparticles were investigated. The effects of chitosan nanoparticles and chitosan nanoparticles–amoxicillin complex on Staphylococcus aureus were also tested. The results showed that the average size of chitosan nanoparticles were in the range 95.5–395 nm and zeta potentials were 39.3–45.7 mV, depending on the concentration and molecular weight of the chitosan. The lower the concentration and molecular weight of the chitosan, the smaller the chitosan nanoparticles and the higher the zeta potential. Testing for antibacterial activity against S. aureus indicated that chitosan nanoparticles strongly inhibited growth of the bacteria; the minimum inhibitory concentration, 20 μg/mL, was lower than those of chitosan solution or amoxicillin. The antibacterial capacity of chitosan nanoparticles also depended on the size, zeta potential, and molecular weight of the chitosan. Complexation of chitosan nanoparticles with amoxicillin improved the antibacterial activity of amoxicillin.  相似文献   

9.
The purpose of the present work was to design and investigate the potential of novel hydroxylpropyl-beta-cyclodextrin (HP-β-CD) and chitosan nanocarriers (NCs) for effective delivery of model, poorly water soluble drug simvastatin. The prepared system was characterized for particle size, particle size distribution (PDI), zeta potential, differential scanning calorimetery, x-ray diffraction, encapsulation efficiency and drug release studies. The results revealed that among the selected ratios of tripolyphosphate/chitosan, ratio 1:4 and 1:5 proved to be optimum in terms of particle size, particle distribution and drug release profile. The average size of nanoparticles increased from 516 to 617 and 464 to 562 nm for ratio 1:4 and 1:5 with increase in drug/HP-β-CD amount. To assess interactions and whether the simvastatin was incorporated in the NCs in its crystalline or amorphous form DSC and XRD were performed. These results suggest that the encapsulation process produces a marked decrease in crystallinity of simvastatin and/or confers to a nearly amorphous state of drug in NCs. Results reveled that with increase in the amount of HP-β-CD/drug the final loading of the NCs increased due to increased solubilization of simvastatin in the presence of HP-β-CD. The in vitro release profile of prepared NCs showed initial fast release (burst effect) followed by a delayed release pattern. In conclusion, these nanocarriers constitute a novel and efficient system for encapsulation and oral delivery of poorly soluble drugs.  相似文献   

10.
Composites of poly(vinyl pyrrolidone)/hydroxyapatite (PVP/HA), at variable proportions (100/0; 80/20; 50/50; 20/80 wt%) were prepared and characterized by Fourier transformer-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermogravimetry/differential thermogravimetry (TG/DTG). PVP carbonyl stretching was slightly shifted to lower frequency in composites indicating the formation of hydrogen bonding with HA hydroxyl groups. At the first cycle of heating, the calorimetric curves revealed a broad peak the intensity of which was reduced insofar as the amount of PVP decreased in the composites. This peak was attributed to the PVP enthalpy relaxation. According to the TG/DTG curves, PVP degraded into two steps sharply perceivable in the composites. The first decay was ascribed to the release of the pyrrolidone pendant groups and the following one concerned the burning of the hydrocarbon chains. The HA molecules seem to exert a catalytic action on the PVP degradation.  相似文献   

11.
In this study, phenolic resins from cashew nut shell liquid (CNSL) were applied as coating on Carbon Steel 1020 samples and successfully cured by plasma treatment or with hexamethylenetetramine (HMTA). The crosslinked samples were characterized by thermal analysis using thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and atomic force microscopy (AFM) techniques in order to evaluate the thermal stability of these samples, as well as understand and study the curing process. TG/DTG curves showed that the thermal stability of the HMTA-cured resin was slightly higher than the resin treated by plasma. According to the DSC curves, HMTA-cured resin and plasma-treated resin exhibited only transition temperatures, so both resins were predominantly amorphous. Images generated by AFM provided qualitative evaluation of the resin surfaces, demonstrating that the coating surface with best homogeneity was cured by plasma treatment.  相似文献   

12.
Tenofovir alafenamide (TAF) is an antiretroviral (ARV) drug that is used for the management and prevention of human immunodeficiency virus (HIV). The clinical availability of ARV delivery systems that provide long-lasting protection against HIV transmission is lacking. There is a dire need to formulate nanocarrier systems that can help in revolutionizing the way to fight against HIV/AIDS. Here, we aimed to synthesize a polymer using chitosan and polyethylene glycol (PEG) by the PEGylation of chitosan at the hydroxyl group. After successful modification and confirmation by FTIR, XRD, and SEM, TAF-loaded PEGylated chitosan nanoparticles were prepared and analyzed for their particle size, zeta potential, morphology, crystallinity, chemical interactions, entrapment efficacy, drug loading, in vitro drug release, and release kinetic modeling. The fabricated nanoparticles were found to be in a nanosized range (219.6 nm), with ~90% entrapment efficacy, ~14% drug loading, and a spherical uniform distribution. The FTIR analysis confirmed the successful synthesis of PEGylated chitosan and nanoparticles. The in vitro analysis showed ~60% of the drug was released from the PEGylated polymeric reservoir system within 48 h at pH 7.4. The drug release kinetics were depicted by the Korsmeyer–Peppas release model with thermodynamically nonspontaneous drug release. Conclusively, PEGylated chitosan has the potential to deliver TAF from a nanocarrier system, and in the future, cytotoxicity and in vivo studies can be performed to further authenticate the synthesized polymer.  相似文献   

13.
The aim of this study was to evaluate the effect of the polymeric ratios on the characteristics of chitosan/alginate (ch/alg) self-assembled nanoparticles and their potential as protein delivery vehicle. The nanoparticles were prepared using proper mixing of polymers in presence or absence of bovine serum albumin (BSA) as a protein model. Three formulations of nanoparticles comprising ch/alg ratios of 2:1, 1:1, and 1:2 were prepared. Size, shape and zeta potential of the formulations were studied by scanning electron microscopy (SEM) and nanosizer instruments. FTIR, and differential scanning calorimetery (DSC) studies were performed to investigate polymer-polymer or polymer-protein interactions. Release profiles and entrapment efficiencies of the nanoparticles were determined by calorimetric technique using appropriate techniques. Entrapment efficiency was 70% for ch/alg ratio of 1:1, 65% for 1:2, and 60% for 2:1. The z-average size of the nanoparticles were 403, 205, and 318 nm for ch/alg ratios of 2:1, 1:1, and 1:2, respectively. Average zeta potentials were ?47, +15, ?25 mV for 2:1, 1:1, and 1:2 as well. Considering the favorable features required for protein delivery systems, ch/alg (1:1) due to its smallest size, highest loading, and most homogenous shape was regarded as the best ratio.  相似文献   

14.
The scope of this work was the assessment of thermo-oxidative deterioration, hydrothermal stability, and crystalline zone deterioration of some bookbinding leathers from some religious books published in XVIII century stored in Romanian libraries. In this purpose, the following thermal analysis methods were employed: thermogravimetry/derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The thermo-oxidative damage of investigated leathers was characterized by the rate of the first thermo-oxidation process put in evidence in TG/DTG curves recorded in static air atmosphere. The hydrothermal stability was characterized by shrinkage temperature determined by DSC analysis of leathers in water excess. The damage of the crystalline zone of leathers was determined by DSC in nitrogen flow and DMA analyses. The qualitative damage for each leather and each kind of degradation was evaluated using the criteria resulted by thermal analysis of a large number of collagen-based materials (pure collagens, new and old parchments and leathers). The obtained results could be used for finding the best possible methods for preservation and/or restoration of the investigated bookbinding leathers.  相似文献   

15.
Thermal decomposition of ammonium alum was studied by simultaneous thermogravimetry (TG)-differential scanning calorimetry (DSC) attached to a Fourier transform infrared (FTIR) spectrometer, so that each mass loss was related with the simultaneous endo- or exothermal behavior and to the FTIR absorption produced by the evolved gases. Apart from some clear dehydration and desulfation processes, other overlapping peaks were observed by DSC, TG, and FTIR. Optimal fitting to logistic mixture models was performed to separate the overlapping processes. Deconvolution of overlapping DTG peaks resulted in single constituent peaks, which were related to plots of some specific FTIR bands along time. Thus, a more accurate insight of the chemical processes taking place was obtained.  相似文献   

16.
Chitosan nanoparticles were prepared from chitosan with various molecular weights by tripolyphosphate (TPP) ionic gelation combined with a spray drying method. The morphologies and characteristics of chitosan nanoparticles were determined by TEM, FE-SEM and from their mean sizes and zeta potentials. The effect of chitosan molecular weight (130, 276, 760 and 1200 cPs) and size of spray dryer nozzle (4.0, 5.5 and 7.0 µm) on mean size, size distribution and zeta potential values of chitosan nanoparticles was investigated. The results showed that the mean size of chitosan nanoparticles was in the range of 166–1230 nm and the zeta potential value ranged from 34.9 to 59 mV, depending on the molecular weight of chitosan and size of the spray dryer nozzles. The lower the molecular weight of chitosan, the smaller the size of the chitosan nanoparticles and the higher the zeta potential. A test for the antibacterial activity of chitosan nanoparticles (only) and a chitosan nanoparticle–amoxicillin complex against Streptococcus pneumoniae was also conducted. The results indicated that a smaller chitosan nanoparticle and higher zeta potential showed higher antibacterial activity. The chitosan nanoparticle–amoxicillin complex resulted in improved antibacterial activity as compared to amoxicillin and chitosan nanopaticles alone. Using a chitosan nanoparticle–amoxicillin complex could reduce by three times the dosage of amoxicillin while still completely inhibiting S. pneumoniae.  相似文献   

17.
Chitosan nanoparticles were obtained via ionic crosslinking by using the sulfate ion. Chitosan molecular weight was varied by oxidative degradation of the chitosan β-glycoside bond, the molecular weight being indirectly monitored as the chitosan solution reduced viscosity at a fixed polymer concentration. The dependence between some physical properties of the resultant dispersions (turbidity, viscosity, zeta potential, and sedimentation column profile) and reduced viscosity was established. Atomic force microscopy images have shown the resultant particles formed to be clusters of chitosan nanoparticles with a diameter of ca. 70 nm, the interaction between these particles being characterized by FTIR spectroscopy as the result of sulfate bridging. At the end of the paper, the potential of these dispersions for the incorporation of anionic drugs via adsorption was evaluated using a model compound. The resultant dispersions were capable of adsorbing more than 25% of mass of chitosan, being the partition coefficient higher than 3,500.  相似文献   

18.
Several calcium silicate hydrate (C–S–H)-polymer nanocomposite (C–S–HPN) materials have been prepared by incorporating poly(acrylic acid) (PAA) into the inorganic layers of C–S–H during precipitation of quasicrystalline C-S-H from aqueous solution. The synthetic C–S–HPN materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), thermogravimetry (TG), differential thermogravimetry (DTG) and differential scanning calorimetry (DSC). The XRD peaks of C–S–HPN materials suggest the intermediate organizations presenting both intercalation of PAA and exfoliation of C–S–H. The SEM images of C–S–H and C–S–HPN materials with different PAA contents exhibit the significant differences in their morphologies. Effects of the material compositions on the thermal stability of series of C–S–HPN materials along with PAA and C–S–H has been studied by TG, DTG and DSC. Three significant decomposition temperature ranges were observed on the TG curves of all C–S–HPN materials.  相似文献   

19.
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (1H NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, 1H NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times.  相似文献   

20.
The combination of pectins and germanium dioxide may generate novel materials with excellent and unique properties combining the advantages of macromolecules, derived from renewable resources and metal oxide nanoparticles. Pectin–GeO2 nanocomposite was prepared by hydrothermal method at room temperature. Structural morphology and chemical interactions between GeO2 and pectin were analyzed using Fourier Transform Infrared Spectroscopy Equipped with Attenuated Total Reflectance (FTIR-ATR), AC impedance spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-ray Spectrophotometer (SEM-EDS) Thermo gravimetric analysis (TG) and Differential Scanning Calorimetry (DSC). According to the TEM observation, the average composite granules size was about 70 nm and the embedded GeO2 nanoparticles were uniform with an average diameter of 20 nm. The pectin-germanium dioxide degradation was observed in one single DSC endoderm peak at 100°C (Area swept 276.4 mJ and enthalpy change 48.1 J/g) and three DTG peaks in the temperature range between 165 and 570°C. All the results suggest the pectin–GeO2 nanocomposite as a promising candidate for biomedical and environmental applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号