首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of laser remelting on microstructure of nanostructured Al2O3-13 wt.% TiO2 ceramic coatings prepared by plasma spraying with agglomerated powders were studied. The microstructure of the feedstock, as-sprayed and laser-remelted coatings were investigated by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffractometry (XRD). The results indicate that the plasma-sprayed ceramic coating consists of both fully melted regions and partially melted regions. The totally ceramic coating, especially the fully melted regions, has a typical plasma-sprayed lamellar-like structure as the conventional coating, and has some pores. According to the difference of microstructures, the partially melted regions can be divided into liquid-phase sintered regions (a three-dimensional net or skeleton-like structure: Al2O3-rich submicron particles embedded in the TiO2-rich matrix) and solid-phase sintered regions (remained nanoparticles). The lamellar defect of the as-sprayed coating is erased, and the compactness of the coating is improved significantly after laser remelting. The laser-remelted region composed of fine equiaxed grains, which are different from the conventional column-like crystals along the direction of the heat current. Due to the rapid solidification of laser remelting process, there are still some nanoparticles in the remelted region because of an insufficient time for grains growth.  相似文献   

2.
The paper presents a study on the preparation of Al2O3 ceramic coating on AZ91HP Mg alloy by laser remelting plasma-sprayed coating. It was found that after laser remelting, the coating exhibited obvious layer-like characteristics due to influence of temperature distribution, thermophysical parameters and layer thickness. According to the microstructural difference, the coating can be divided into the melted zone with the α-Al2O3 column-like crystal, the sintered zone with flock-like structure, the residual plasma-sprayed zone with loosened structure. Because of the dense column-like crystal, the hardness, wear and corrosion resistance of the laser remelted coating are much higher than those of the plasma-sprayed coating and as-received Mg alloy.  相似文献   

3.
Lanthanum-zirconium nano-powders were synthesized by molten salts method. Nanostructured lanthanum-zirconium coatings were deposited by air plasma spraying. Scanning electron microscopy and X-ray diffraction were carried out to analyze the as-sprayed coatings and powders. The pore size distribution and buck density of coatings were identified by mercury intrusion porosimetry. The thermophysical properties of the nanostructured coatings were also examined through laser flash technique and differential scanning calorimetry. The results demonstrate that the as-sprayed nanostructured coatings consist of the pyrochlore-type phase. The as-sprayed nanostructured lanthanum-zirconium coatings have a very low porosity. The thermal conductivity of the as-sprayed nanostructured lanthanum-zirconium coating is lower than that of the conventional coating between 200 °C and 950 °C, but when the temperature between 950 °C and 1300 °C, the result is reverse.  相似文献   

4.
Composite coatings using pure Al powder blended with α-Al2O3 as feedstock were deposited on AZ91D magnesium alloy substrates by cold spray (CS). The content of α-Al2O3 in the feedstock was 25 wt.% and 50 wt.%, respectively. The effects of α-Al2O3 on the porosity, microhardness, adhesion and tensile strength of the coatings were studied. Electrochemical tests were carried out in neutral 3.5 wt.% NaCl solution to evaluate the effect of α-Al2O3 on the corrosion behavior of the coatings. The results showed that the composite coatings possessed lower porosity, higher adhesion strength and tensile strength than cold sprayed pure Al coating. The corrosion current densities of the composite coatings were similar to that of the pure Al coating and much higher than that of bare AZ91D magnesium alloy.  相似文献   

5.
Al2O3 and Al2O3-Al composite coatings were prepared by plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction (XRD), while optical microscopy (OM) and scanning electron microscopy (SEM) were employed to investigate the morphology of impacted droplets, polished and fractured surface, and the element distribution in terms of wavelength-dispersive spectrometer (WDS). Mechanical properties including microhardness, adhesion and bending strength, fracture toughness and sliding wear rate were evaluated. The results indicated that the addition of Al into Al2O3 was beneficial to decrease the splashing of impinging droplets and to increase the deposition efficiency. The Al2O3-Al composite coating exhibited homogeneously dispersed pores and the co-sprayed Al particles were considered to be distributed in the splat boundary. Compared with Al2O3 coating, the composite coating showed slightly lower hardness, whereas the coexistence of metal Al phase and Al2O3 ceramic phase effectively improved the toughness, strength and wear resistance of coatings.  相似文献   

6.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   

7.
A promising WC-Co-Cu-BaF2/CaF2 self-lubricating wear resistant coating was deposited via atmospheric plasma spraying (APS) process by using homemade feedstock powders composed of WC-Co, Cu and BaF2/CaF2 eutectic. The as-prepared cermet coatings had better frictional behavior comparing with the WC-Co coating. Moreover, the often-occurred decarburization of WC in APS process was noticeably improved due to the binding of copper and BaF2/CaF2 phase, which not only offered effective solid lubrication, but also acted as bind phases to mend the microstructure and protected WC from decomposition. The optimized specimen contained 10 wt.% Cu and 10 wt.% BaF2/CaF2 in a WC-Co matrix, which had excellent frictional and wear performance. The wear mechanism of the self-lubricating wear resistant coating was discussed with the microstructures, compositions and mechanical properties of the composite materials in detail.  相似文献   

8.
BaO oxide is the main storage component of the NOx storage and reduction catalysts. Herein, the interactions between the NO2 molecule and the unsupported as well as γ-Al2O3 supported BaO clusters have been studied using the first principle density functional theory calculation. Our results indicated that there is a strong synergetic effect involving both the BaO clusters and the surface of the γ-Al2O3 substrate toward NO2 adsorption. The interfacial region between the monodispersed BaO cluster and the substrate surface that allows NO2 to bond with the cluster and the surface simultaneously was shown to be optimal for NO2 adsorption.  相似文献   

9.
谭鑫鑫  吕树臣 《光子学报》2014,39(7):1169-1175
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547 nm、560 nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

10.
Cycle oxidation resistance at 800 °C in static air was investigated for a nanostructured Ni60-TiB2 composite coating sprayed by high velocity oxy-fuel (HVOF). For comparison, a Ni60-TiB2 conventional composite coating was also studied. The results indicate that, the oxidation processes of both composite coatings are controlled by diffusion mechanism, and the nanostructured composite coating has better cycle oxidation resistance than that of the conventional composite coating. The reasons for this improvement can be attributed to the formation of the intact SiO2 and Cr2O3 protective layer, and the enhanced adhesion between oxide film and nanostructure coating.  相似文献   

11.
The uniform and dense Al2O3 and Al2O3/Al coatings were deposited on an orthorhombic Ti2AlNb alloy by filtered arc ion plating. The interfacial reactions of the Al2O3/Ti2AlNb and Al2O3/Al/Ti2AlNb specimens after vacuum annealing at 750 °C were studied. In the Al2O3/Ti2AlNb specimens, the Al2O3 coating decomposed significantly due to reaction between the Al2O3 coating and the O-Ti2AlNb substrate. In the Al2O3/Al/Ti2AlNb specimens, a γ-TiAl layer and an Nb-rich zone came into being by interdiffusion between the Al layer and the O-Ti2AlNb substrate. The γ-TiAl layer is chemically compatible with Al2O3, with no decomposition of Al2O3 being detected. No internal oxidation or oxygen and nitrogen dissolution zone was observed in the O-Ti2AlNb alloy. The Al2O3/Al/Ti2AlNb specimens exhibited excellent oxidation resistance at 750 °C.  相似文献   

12.
The influence of hydrothermal treatment on the total acidity and the acidity distribution of γ-Al2O3 were studied in this paper. The experimental results indicated that the hydrothermal treatment of γ-Al2O3 at moderate condition (140 °C, 1.0-24.0 h) led to the formation of the plate-like γ-AlOOH crystallites with different morphologies, which resulted in the change of the surface acidity of the corresponding γ-Al2O3 supports. The increase of the reaction time in the period of 1.0-2.0 h led to the increase of the specific surface area, the surface OH, the total acidity and the ratio of the weak acidity in the acidity distribution of γ-Al2O3. The further prolongation of reaction time caused the overgrowth of γ-AlOOH crystallites, leading to the decrease of the specific surface area, the surface OH and the total acidity of the corresponding γ-Al2O3.  相似文献   

13.
Bi2O2CO3 nanosheet with a thickness of less than 20 nm was synthesized via hydrothermal and solvothermal process. The properties of the as-prepared nanosheet were characterized by X-ray diffraction, scanning electron microscopy, and diffuse reflectance spectra. The electronic structure was investigated using first-principle calculations. Application of the as-prepared Bi2O2CO3 nanosheet in photocatalysis was also studied.  相似文献   

14.
A novel kind of La2O3 doped diamond-like carbon (DLC) films with thickness of 100-120 nm were deposited by unbalanced magnetron sputtering. Raman spectra and photoluminescence properties were measured by Raman spectrometer operated by 325 nm He-Cd laser and 514 nm Ar+ laser, respectively. The intensities of Raman spectra and photoluminescence are higher than those of pure DLC films. The La2O3 doped DLC films have the potential promising for the application of solar cell coatings.  相似文献   

15.
Au nano-particles doped α-Al2O3 composite coatings were successfully prepared on TiAl-based alloy by electrodeposition, using the Al2O3 sols with minor addition of HAuCl4 solution. The even distribution of Au nano-particles (<2.0 wt.%) in the α-Al2O3 matrix has been observed. Isothermal oxidation tests of the samples coated with the as-prepared novel coatings at 900 °C in static air for 200 h shown that the oxygen inward diffusion can be effectively suppressed to a low level. The results of high-temperature cyclic oxidation test at 900 °C in air revealed that the oxidation and spallation resistance of TiAl-based alloy were improved significantly under thermal cycling. In the as-prepared coatings, cracks were shielded by means of crack bridging and the fracture resistance of the formed scales can be improved by toughening effects of the composite structure. Surface scratching tests after the cyclic oxidation exhibited that the adhesion of the formed composite scale on TiAl-based alloy was remarkably improved by the Au nano-particles doped α-Al2O3 composite coating.  相似文献   

16.
There are two major difficulties in the TiO2 liquid-solid photocatalytic system: effective immobilization of the TiO2 particles; and improving the catalytic activity under visible light. To simultaneously solve these two problems, Fe2O3-TiO2 coatings supported on activated carbon fiber (ACF), have been prepared in one step by a convenient and efficient method—metal organic chemical vapor deposition (MOCVD). XRD results revealed that Fe2O3-TiO2 coatings mainly composed of anatase TiO2, α-Fe2O3 phases and little Fe2Ti3O9. The pore structure of ACF was preserved well after loading with Fe2O3-TiO2 coatings. UV-vis diffuse reflectance spectra showed a slight shift to longer wavelengths and an enhancement of the absorption in the visible region for Fe2O3-TiO2 coatings, compared to the pure TiO2 sample. A moderate Fe2O3-TiO2 loading (13.7 wt%) was beneficial to mineralizing wastewater because the intermediates could be adsorbed onto the surface of photocatalyst following decomposition. The stable performance revealed that the Fe2O3-TiO2 coatings were strongly adhered to the ACF surface, and the as prepared catalysts could be reused showing potential application for wastewater treatment.  相似文献   

17.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and La2Ce2O7 (LC) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, interdiffusion, surface and cross-sectional morphologies, cyclic oxidation behavior of DCL coating were studied. Energy dispersive spectroscopy and X-ray diffraction analyses indicate that both LZ7C3 and LC coatings are effectively fabricated by a single LZ7C3 ingot with properly controlling the deposition energy. The chemical compatibility of LC coating and thermally grown oxide (TGO) layer is unstable. LaAlO3 is formed due to the chemical reaction between LC and Al2O3 which is the main composition of TGO layer. Additionally, the thermal cycling behavior of DCL coating is influenced by the interdiffusion of Zr and Ce between LZ7C3 and LC coatings. The failure of DCL coating is a result of the sintering of LZ7C3 coating surface, the chemical incompatibility of LC coating and TGO layer and the abnormal oxidation of bond coat. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.  相似文献   

18.
Cobalt-based alloy coatings with and without nano-Y2O3 particles produced by a 5 kW CO2 laser on Ni-based superalloy were introduced. Solidified microstructure, phase compositions and distribution of nano-particles were investigated by using optical microscope, SEM, TEM and XRD. The results showed that metastable phases, such as γ-Co and Cr23C6 existed in cobalt-based alloy coatings. Another two phases (Y2O3 and ?-Co) were found by adding nano-Y2O3. Without nano-Y2O3, rapid directional solidified microstructure of columnar dendrite appeared. Fine and short dendritic microstructure and columnar to equiaxed transition (CET) occurred by adding nano-Y2O3 particles. With the increase in amount of nano-Y2O3, fully equiaxed crystallization appeared and the formation mechanism was analyzed. The results also showed that the sub-microstructure of the coatings changed from dislocation to stacking fault by adding nano-Y2O3.  相似文献   

19.
通过固相反应法制备了Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的样品,并对样品在980nm激光激发下的上转换发光特性进行了研究.从发射光谱可以发现,在可见光范围内有3个强的发光带,一个位于654nm附近的红光带和两个分别位于545nm、525nm附近的绿光带,分别对应于Er3+离子的以下辐射跃迁:4F9/24I15/24S3/24I15/22H11/24I15/2.其中又以Er3+离子的4F9/24I15/2跃迁产生的红色荧光辐射最强.对其上转换发光机制进行了分析,发现这三个发光过程都是双光子过程.对样品粉末进行了XRD检测,发现ZrO2主要以立方相为主,并且计算得到了这种立方结构的晶格常数.Al2O3固溶于ZrO2中,Al3+嵌入ZrO2后产生氧空位,导致ZrO2晶体的对称性降低,这种结构变化更有利于提高上转换效率,即上转换发光强度增强. 关键词: 3+/Yb3+')" href="#">Er3+/Yb3+ 上转换 2-Al2O3')" href="#">ZrO2-Al2O3 荧光 稀土  相似文献   

20.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号