首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Atomic Force Microscopy (AFM) helps in evaluating parameters like amplitude or height parameters, functional or statistical parameters and spatial parameters which describe the surface topography or the roughness. In this paper, we have evaluated the roughness parameters for the native poly (vinyl alcohol) (PVA), monomer diaminonaphthalene (DAN) doped PVA, and poly (diaminonaphthalene) (PDAN) doped PVA films prepared in different solvents. In addition, distribution of heights, skewness and Kurtosis moments which describe surface asymmetry and flatness properties of a film were also determined. At the same time line profiles, 3D and 2D images of the surface structures at different scanning areas i.e. 5 × 5 μm2 and 10 × 10 μm2 were also investigated. From the roughness analysis and the surface skewness and coefficient of Kurtosis parameters, it was concluded that for PVA film the surface contains more peaks than valleys and the PDAN doped PVA film has more valleys than peaks. It was also found that the PDAN doped PVA film with acetonitrile solvent was used for substrate in electronics applications because the film gives less fractal morphology. Thus, the AFM analysis with different parameters suggested that the PDAN doped PVA films are smooth at the sub-nanometer scale.  相似文献   

2.
The definition of the time varying force on a tip with internal degrees of freedom in atomistic molecular dynamics (MD) simulations of scanning force microscopy experiments is discussed. We show that the static expression for the tip force is inadequate for calculating force fluctuations within the MD simulations and suggest a different method of calculating the tip force. By studying the size of tip force fluctuations for different tip models and various tip positions with respect to the surface, we demonstrate that the new method works equally well in both static and dynamic cases.  相似文献   

3.
The study of intermolecular interactions at interfaces is essential for a number of applications, in addition to the understanding of mechanisms involved in sensing and biosensing with liquid samples. There are, however, only a few methods to probe such interfacial phenomena, one of which is the atomic force spectroscopy (AFS) where the force between an atomic force microscope tip and the sample surface is measured. In this study, we used AFS to estimate adhesion forces for a nanostructured film of poly(o-ethoxyaniline) (POEA) doped with various acids, in measurements performed in air. The adhesion force was lower for POEA doped with inorganic acids, such as HCl and H2SO4, than with organic acids, because the counterions were screened by the ethoxy groups. Significantly, the morphology of POEA both in the film and in solution depends on the doping acid. Using small-angle X-ray scattering (SAXS) we observed that POEA dissolved in a mixture of dimethyl acetamide exhibits a more extended coil-like conformation, with smaller radius of gyration, than for POEA in water, as in the latter POEA solubility is lower. In AFS measurements in a liquid cell, the force curves for a POEA layer displayed an attractive region for pH ≥ 5 due to van der Waals interactions, with no contribution from a double-layer since POEA was dedoped. In contrast, for pH ≤ 3, POEA was doped and the repulsive double-layer force dominated. With AFS one is therefore able to correlate molecular-level interactions with doping and morphology of semiconducting polymers.  相似文献   

4.
《光谱学快报》2012,45(9):510-519
Abstract

Introduction: Clinical differential diagnosis of endometrial carcinoma is challenging, as signs and symptoms may vary considerably and there is a lack of reliable diagnostic serum biomarkers.

Aim of the study: The aim of our work was to characterize the deoxyribonucleic acid and chromatin changes in the tissue of patients confirmed to be suffering from endometriosis and endometrial adenocarcinoma and compare it with a healthy control group.

Material and methods: All samples were collected during recommended surgical interventions, and after the DNA isolation, a sonification followed by crosslink of chromatin were done. Consequently, both DNA and chromatin were examined using atomic force microscopy.

Results: A chromatin immunoprecipitation was used for the in vivo observation of conformational chromatin changes. The width of ssDNA showed a significant difference, almost double the control value in the endometrial cancer sample versus control (by 73?±?5% wider, p?<?0.001). In contrast, the height of ssDNA was highest in the frozen pelvis patient sample (by 510?±?12% compared to control, p?<?0.01).

Conclusion: Our results suggest that the horizontal size of single-stranded deoxyribonucleic acid and nucleosomes can help to identify potential patients with endometrial adenocarcinoma, while the height of the same parameter is associated with endometriosis.  相似文献   

5.
Human plasma fibrinogen (HPF) was observed by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM) conducted in non-contact mode. The HPF was adsorbed on a highly oriented pyrolytic graphite (HOPG) substrate as single molecules, as aggregated bundles, and as aggregated fibers. Topographic and phase images confirmed structural changes in the HPF after exposure to air, while topographic and KPFM images confirmed fibers with the width of a single HPF molecule. Additionally, KPFM confirmed the surface potential difference between the HPF and the HOPG, and periodical potential drop reflecting the E and D domains in the fiber.  相似文献   

6.
The surface of 1T-TiS2 was examined by scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The STM and AFM images of this compound were interpreted on the basis of the partial electron density ρ(r,EF) and total electron density ρ(r) of a slab which consists of six (001) 1T-TiS2 layers. Electronic structure calculations were performed using the ab-initio Hartree–Fock program crystal. It was found that the bright spots in experimental STM images correspond to sulfur atoms at both positive and negative bias voltages. The AFM image showed a periodicity which can be explained by the atomic corrugation at the surface. Structural defects on the surface were also investigated, and their interpretation constitutes experimental proof that only sulfur atoms were detected by scanning probe microscopies.  相似文献   

7.
The (0001) surface of highly oriented pyrolytic graphite is studied by scanning force microscopy in both contact and dynamic mode. Low temperatures were necessary for the dynamic mode measurements in order to achieve the required signal to noise ratio. At 22 K, atomic scale structures with 2.46 Å periodicity and trigonal symmetry of the individual maxima were obtained in both modes. Since graphite exhibits a van der Waals surface in good approximation, this result shows that comparatively weak forces of van der Waals type are sufficient for successful imaging in the dynamic mode on the atomic scale. However, since the positions of the observed maxima correspond to the ones found by scanning tunneling microscopy and contact scanning force microscopy, but not to the positions of the carbon atoms, it also opens new questions on the imaging mechanism in the dynamic mode.  相似文献   

8.
We demonstrated the high resolution imaging of the organic molecules using noncontact atomic force microscopy in ultrahigh vacuum. The sample was C60 molecules deposited on the Si(111)-7×7 reconstructed surface. When the thickness of the C60 film was submonolayer, we could image some isolated C60 molecules and the reconstructed Si surface simultaneously. However, the imaging was highly unstable not only because of the large structure but also due to the large difference between the interaction forces on the molecules and on the Si surface. On the other hand, when the thickness of the C60 molecules was almost monolayer, individual molecules could be stably imaged.  相似文献   

9.
Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale.Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement.In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail.  相似文献   

10.
Exchange force of a ferromagnetic Fe probe on antiferromagnetic NiO(0 0 1) surface has been investigated by means of a first-principles calculation. Calculated exchange force images show a clear spin image when the probe is located within 1 Å above the contact point. We can see antiferromagnetic pattern of the surface Ni atoms along the [1 1 0] direction, and asymmetric feature around surface O sites. The main contrast of Ni comes from the direct exchange interaction between the Fe probe and the surface Ni atom, while the asymmetric image possibly comes from the super exchange interaction between the Fe probe and the second layer Ni atom via the surface O. Such asymmetric feature is a key proof of the exchange force microscope image on observation.  相似文献   

11.
The physical origin of tip-induced motion of Cu adatoms on anisotropic Cu surfaces is investigated by means of total energy calculations which are based on three different semi-empirical potentials. The calculations show that for certain tip–adatom distances the activation barrier for the adatom to move towards the tip disappears completely, whereas the barrier in the opposite direction increases and the adatom experiences an attractive force towards the tip. The general trends do not depend on the shape and chemical nature of the tip, but quantitatively there appear differences.  相似文献   

12.
Equations for calculating track parameters have been proposed, which invariably involve the track etch rate Vt and the bulk etch rate Vb. The present study measured Vb for the LR115 solid-state nuclear track detector using atomic force microscopy (AFM). The detectors were partially masked using rubber cement and then etched in 2.5 N NaOH solution at 60°C for time periods ranging from 5 to 40 min. The rubber cement was then peeled off and cross-sectional images of the LR115 detectors were obtained by AFM. Vb has been found to have different values below and beyond the etching time of about 13.5 min, with the values of 0.0555 and 0.0875 μm min−1, respectively. The increase in Vb with the etching time can be explained by a diffusion-etch model, in which the additional damage of the detector material is due to those etchant ions diffused into the detector over time. Now that Vb has been determined, this can be combined with the track etch rate Vt to calculate track parameters.  相似文献   

13.
A series of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) composite thin films with prescribed concentrations of poly(ethylene glycol) were prepared. The PEDOT–PSS pristine film and PEDOT–PSS/PEG films were studied using four-probe method, photoelectron spectroscopy and atomic force microscopy. The electrical conductivity of PEDOT–PSS/PEG hybrid films was found to be enhanced compared to the PEDOT–PSS pristine film, depending on the PEG concentration and molecular weight. XPS analysis and AFM results showed that PEG induces the phase separation between the PEDOT–PSS conducting particles and the excessive PSSNa shell. Simultaneously PEG may form hydrogen bond with sulfonic groups of PSSH, and hence weaken the electrostatic interactions between PEDOT cationic chains and PSS anionic chains. These resulted in the creation of a better conduction pathway among PEDOT–PSS particles, attributed to the improvement of conductivity.  相似文献   

14.
Laterally resolved topography and Contact Potential Difference (CPD) images, acquired during the exposure of clean Si(1 1 1) 7 × 7 to molecular oxygen at room temperature, show a heterogeneous oxidation process, without preference for step edges. The increase of and lateral changes in work function variations show that the CPD variations of the final oxide film are related to the silicon/oxide interface. The molecular Höfer precursor has a pronounced influence on the development of the interface bonding.  相似文献   

15.
We have investigated the morphology and surface electron states of LiBq4 deposited on ITO and CuPc/ITO, using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM observations indicate that LiBq4 can form a much more uniform film on CuPc than that on ITO. Furthermore, X-ray photoelectron spectroscopy (XPS) is utilized to further demonstrate the AFM results. From the analysis of XPS, we found that LiBq4 molecules have poor thermal stability, they are seriously oxidized during depositing; but when a CuPc layer is inserted between LiBq4 and ITO film, the oxidation and surface contamination of LiBq4 are significantly reduced. It is then concluded that the introduction of a CuPc buffer layer under the LiBq4 film can improve the film quality of LiBq4.The XPS results also testified the fact that no coordination bonds between N atoms and B atoms are formed in LiBq4 molecules, which make LiBq4 to be potential blue organic light-emitting material.  相似文献   

16.
A kind of chiral azobenzene amphiphile, N-[4-(4-dodecyloxyphenylazo)benzoyl]- -glutamic acid (C12-Azo- -Glu; as shown in Fig. 1), was synthesized and the self-organization properties on solid substrates were investigated. C12-Azo- -Glu underwent a reversible transcis photoisomerization in dilute solution. While the photoisomerization was suppressed on solid substrate because of the H-aggregation, indicating the formation of compact film. When C12-Azo- -Glu was cast from ethanol solution onto the hydrophilic surface of mica, a stable flat-layered structure formed spontaneously in large scale. High-resolution images allowed the identification of the relative orientation of molecular rows in the ordered thin film and the crystal lattice of mica. A molecular packing model of the layered structure was proposed. There was a template effect of mica to the self-organization process. Hydrogen bonding, π–π interaction and the chiral center in the molecule played the important roles in the self-organization process. The cooperative competitive effect between them led to the highly ordered structure.  相似文献   

17.
Distance-dependent dynamic scanning force microscopy (SFM) measurements of InAs(110)-(1×1) acquired in ultrahigh vacuum at low temperatures are presented. On this surface, the atoms of the As sublattice are lifted by 80 pm with respect to the In sublattice and terminate the surface. Thus, since in most dynamic SFM images only protrusions with the periodicity of one sublattice are observed, these protrusions are correlated with the positions of the As atoms. However, under certain conditions, an additional contrast is visible which can be attributed to an interaction between the foremost tip atoms and the In atoms. Possible contrast mechanisms are discussed in terms of tip–sample distance and tip structure.  相似文献   

18.
Evolution of surface structure during the annealing of e-beam evaporated Ti films is studied by means of atomic force microscopy (AFM). Image variography and power spectral density analysis are used to study scaling properties of the films, ranging from 50 nm to 20 μm length scale. No particular grain size is observed up to 473 K. At 673 K, grain size of ∼250 nm are formed and coalesced to form bigger grain size upon further annealing. At 473 K, RMS roughness dropped at all length scale and became rougher at 673 K with an increasing trend up to 873 K. Clustering at 673 K indicates Kosterlitz-Thaouless [J.M. Kosterlitz, D.J. Thaouless, J. Phys. Chem. 6 (1973) 1181] type phase transition at the surface. The observed transition is also consistent with existing scaling laws.  相似文献   

19.
Constant force images of the V2O5(001) surface were recorded in ambient conditions with atomic force microscopy. All images exhibit the 11.5 Å × 3.5 Å. periodicity expected for a bulk terminated surface. However, images reveal differences from the ideal structure. The experimental results are interpreted in terms of preferential adsorption sites for water molecules. Because these sites are thought to influence the catalytic properties of the surface, their characterization is an important step towards understanding how the atomic-scale structure of a surface influences its properties.  相似文献   

20.
The interlayer bonding in two-dimensional (2D) materials is particularly important because it is not only related to their physical and chemical stability but also affects their mechanical, thermal, electronic, optical, and other properties. To address this issue, we report the direct characterization of the interlayer bonding in 2D SnSe using contact-resonance atomic force microscopy (CR-AFM) in this study. Site-specific CR spectroscopy and CR force spectroscopy measurements are performed on both SnSe and its supporting SiO2/Si substrate comparatively. Based on the cantilever and contact mechanic models, the contact stiffness and vertical Young’s modulus are evaluated in comparison with SiO2/Si as a reference material. The interlayer bonding of SnSe is further analyzed in combination with the semi-analytical model and density functional theory calculations. The direct characterization of interlayer interactions using this non-destructive methodology of CR-AFM would facilitate a better understanding of the physical and chemical properties of 2D layered materials, specifically for interlayer intercalation and vertical heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号