首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiMnPO4, with a particle size of 50–150 nm, was prepared by oleic acid-assisted solid-state reaction. The materials were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the materials were investigated by galvanostatic cycling. It was found that the introduction of oleic acid in the precursor led to smaller particle size and more homogeneous size distribution in the final products, resulting in improved electrochemical performance. The electrochemical performance of the sample could be further enhanced by Co doping. The mechanism for the improvement of the electrochemical performance was investigated by Li-ion chemical diffusion coefficient ( [(D)\tilde]\textLi ) \left( {{{\tilde{D}}_{\text{Li}}}} \right) and electrochemical impedance spectroscopy measurements. The results revealed that the [(D)\tilde]\textLi {\tilde{D}_{\text{Li}}} values of LiMnPO4 measured by cyclic voltammetry method increase from 9.2 × 10−18 to 3.0 × 10−17 cm2 s−1 after Co doping, while the charge transfer resistance (R ct) can be decreased by Co doping.  相似文献   

2.
Transport properties of ionic salt CsH5(PO4)2 are studied by the impedance method. The salt’s bulk conductivity ranges from 10?8 to 10?4 S cm?1 in the temperature interval 90 to 145°C. The apparent activation energy is high (1.6–2.0 eV). The conductivity is slightly anisotropic: it is maximum in the [001] direction and minimum in the [100] direction (~5.6 and 1 times × 10?6 S cm?1, respectively, at 130°C). The conductivity of polycrystalline samples is higher by 1–2 orders of magnitude, and the activation energy drops to 1.05 eV due to the formation of a pseudoliquid layer with a high proton mobility at the intercrystallite boundary. The salt’s thermodynamic properties are examined by differential scanning calorimetry and thermogravimetry. No phase transitions are discovered in the salt up to the melting point (151.6°C), with the melting enthalpy equal to ~34 kJ mol?1. The crystallization occurs at lower temperatures (107°C) and the crystallization enthalpy (?18 kJ mol?1) is lower than the melting enthalpy. The melting is accompanied by slow decomposition of the salt. Factors affecting the proton transport in the salt are analyzed.  相似文献   

3.
Heat capacity measurements of barium tantalate (BaTa2O6) were carried out by using a differential scanning calorimeter at temperatures between 323 and 1323 K. From the heat capacity values of BaTa2O6, other thermodynamic functions (enthalpy and entropy increments) were derived between 298.15 and 1323 K. The C p,m (298.15) value of BaTa2O6 was computed as 184.857 J mol?1 K?1. Moreover, fitted heat capacities exhibited good agreement with Neumann–Kopp rule at the temperatures between 298.15 and 1300 K.  相似文献   

4.
Specific conductivity of molten salt mixtures of the LiF-ZrF4, NaF-ZrF4, KF-ZrF4, RbF-ZrF4, and CsF-ZrF4 systems is measured in the whole concentration range using the reference capillary technique. The results are presented in the form of equations of the χ = a + bT + cT 2 [S m?1] type. The concentration dependences of molar conductivity are calculated on the basis of the density data. The obtained regularities are explained in the terms of the complex model of ion melt structures.  相似文献   

5.
The molar heat capacity of Pb4V2O9 and Pb8V2O13 in the temperature range 350–1000 K was measured by differential scanning calorimetry. It was determined that the plot Cp = f(T) for Pb8V2O13 has an extremum within the range 416–516 K, which is due to a phase transition. A correlation was found between the heat capacity and composition of oxides in the PbO–V2O5 system. The data obtained allowed one to predict the specific heat capacity value for Pb(VO3)2.  相似文献   

6.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

7.
The characteristics of crystal structures of the titanium(IV) diammonium (Ti(NH4)2P4O13) and tin(IV) diammonium (Sn(NH4)2P4O13) tetraphosphates, which are isostructural with similar silicon(IV) and germanium(IV) salts, have been obtained by the Rietveld method using X-ray powder diffraction data. The compounds crystallize in the triclinic system, space group P \(\overline 1 \), Z = 2, a = 15.0291(7) Å, b = 7.9236(4) Å, c = 5.0754(3) Å, α = 99.168(3)°, β = 97.059(3)°, γ = 83.459(3)° for Ti(NH4)2P4O13 and a = 15.1454(7) Å, b = 8.0103(5) Å, c = 5.1053(3) Å, α = 99.898(6)°, β = 96.806(3)°, γ = 83.881(4)° for Sn(NH4)2P4O13. The structure is refined in the isotropic approximation using the pseudo-Voigt function: R p = 0.077, R Bragg = 0.045, R F = 0.057 for Ti(NH4)2P4O13; R p = 0.082, R Bragg = 0.044, R F = 0.046 for Sn(NH4)2P4O13. The hydrogen atoms of the ammonium cations are placed in the calculated positions. A comparative analysis of the structures of the compounds of the MIV(NH4)2P4O13 (MIV = Si, Ge, Ti, Sn) series has been carried out.  相似文献   

8.
The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \(\bar 3\) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \(\bar 1\), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.  相似文献   

9.
Phase equilibria in the three-component systems LiBr-LiVO3-Li2MoO4 and LiBr-Li2SO4-Li2MoO4 have been studied using differential thermal analysis (DTA). Eutectic compositions have been determined (mol %): in the system LiBr-LiVO3-Li2MoO4, 56.0 LiBr, 22.0 LiVO3, and 22.0 Li2MoO4 with a melting temperature of 413°C; and in the system LiBr-Li2SO4-Li2MoO4, 65.0 LiBr, 14.0 Li2SO4, and 21.0 Li2MoO4 with a melting temperature of 421°C. Phase fields have been demarcated.  相似文献   

10.
The Cu-B-Se (B = In, As, Sb, Bi) systems are studied by measurement of EMF for concentration circuits vs. a copper electrode in the temperature range of 300–430 K. A solid superionic Cu4RbCl3I2 conductor is used as an electrolyte. Diagrams of solid-phase equilibriums in the studied systems are constructed. Partial molar functions of alloyed copper are calculated on the basis of the equations of the temperature dependences of EMF. Potential-forming reactions corresponding to the measured EMF values are determined on the basis of the phase diagrams and standard thermodynamic formation functions and standard entropies of ternary compounds are calculated.  相似文献   

11.
Areas of fusion and crystallization peaks of K3TaO2F4 and KTaF6 were measured using the DSC mode of a high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities, considering the temperature dependence of the calorimeter sensitivity, values of the fusion enthalpy of K3TaO2F4 at the fusion temperature of 1181 K of (43 ± 4) kJ mol−1 and of KTaF6 at the fusion temperature of 760 K of (8 ± 1) kJ mol−1 were determined.  相似文献   

12.
Olivine-type LiFePO4 is a very promising polyanion-type cathode material for lithium-ion batteries. In this work, LiFePO4 with high specificity capacity is obtained from a novel precursor NH4FePO4·H2O via microwave processing. The grains grow up in the duration of sintering until they reach the decomposition temperature. The apparent conductivity of the samples rises rapidly with the irradiation time and influences the electrochemical performance of the material greatly at high current density. As a result, the LiFePO4 cathode material obtained with a sintering time of 15 min has good electrochemical performance. Between 2.5 and 4.2 V versus Li, a reversible capacity is as high as 156 mAh g−1 at 0.05 C.  相似文献   

13.
Crystal structures of (NH4)3ZrF7 (I) and (NH4)3NbOF6 (II) are refined by X-ray diffraction at room temperature. The compounds are isostructural and belong to the structural type of elpasolite: space group F23; a(I) = 9.4185(3) Å, a(II) = 9.3371(5) Å; V(I) = 835.50(5) Å3, V(II) = 814.02(8) Å3; Z = 4; R(I) = 0.0145, and R(II) = 0.0138. The refinement of the structures in the space group Fm3m yields abnormally short X-X distances in the pentagonal bipyramid MX7 (X = F, O). The oxygen atom in II is identified by Nb-X distances and occupies one of the axial vertices of the bipyramid. The Nb atom in II is statistically distributed over the position 24f, while Zr in I resides in the symmetry center. The pentagonal bipyramid MX7 has six independent orientations in I and twelve in II. One of three crystallographically independent ammonium groups of the structures is disordered over six or twelve equivalent orientations.  相似文献   

14.
Areas of fusion and crystallization peaks of K3NbO2F4 were measured using the DCS mode of a high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities, considering the temperature dependence of the calorimeter sensitivity, the value of the fusion enthalpy of K3NbO2F4 of (98 ± 6) kJ mol−1 was determined at the fusion temperature of 1257 K.  相似文献   

15.
Phase equilibria in the LiF-LiCl-LiVO3-Li2SO4-Li2MoO4 system have been studied by differential thermal analysis. The eutectic composition has been determined as follows (mol %): LiF, 17.4; LiCl, 42.0; LiVO3, 17.4; Li2SO4, 11.6; and Li2MoO4, 11.6, with the melting temperature equal to 363°C and the enthalpy of melting equal to (284 ± 7) kJ/kg.  相似文献   

16.
Phase equilibria in the Ca3(VO4)2-K3VO4-NdVO4 system have been studied. An extensive calcium orthovanadate-based solid solution was found to form with the boundary compositions as follows: Ca3(VO4)2-Ca9Nd(VO4)7-Ca9.33K2.33(VO4)7-Ca7.88K2.63Nd0.87(VO4)7. The unit cell parameters of the whit-lockite vanadates synthesized increase as the potassium and neodymium contents increase. Phase transitions from the low-temperature β phase to the β′ centrosymmetrical structure in Ca9.33 − 5z K2.33 + z Nd3z (VO4)7 vanadates have been studied dilatometrically. The increase in the β ai β′ transition temperature caused by potassium is interpreted as arising from the filling in of vacant cation positions M(4) and M(6).  相似文献   

17.
(NH4)Sb4F13 crystals (I) are synthesized and their crystal structure (tetragonal crystal system: a = 9.6431(2) Å, c = 6.5503(2) Å, V = 609.11(3) Å3, Z = 2, d calc = 4.100 g/cm3, F(000) = 664, space group I4?) is determined. The main structural units of I are tetranuclear anionic [Sb4F13]? complexes and [NH4]+ cations. The anionic complexes are built of four SbF3 groups linked together by tetrahedral bridging fluorine atom. At room temperature the (NH4)Sb4F13 crystals are isostructural to previously studied МSb4F13 (М = K, Rb, Cs, and Tl). The study of 121,123Sb NQR spectra of compound I is performed in a range of 77-370 K, which shows that when the temperature decreases (<250 K) the substance exhibits piezoelectric properties, as do other compounds of this group, but with a violation of their isostructurality.  相似文献   

18.
The four-component system LiF-K2WO4-CaF2-BaWO4 has been studied for the first time using physicochemical methods. The a priori prediction of the phase complex revealed the phase tree and crystallization path of the system. The prediction was verified experimentally, by construction of a topologic model of the phase diagram, and the solution of the equations of the general law of liquidus-surface formation. The density has been measured, and the heat-storage properties of eutectic mixtures have been estimated.  相似文献   

19.
The 950°C isothermal section of the InPO4-Na3PO4-Li3PO4 ternary system was studied and constructed; one-, two, and three-phase fields are outlined. Five solid-solution regions exist in the system: solid solutions based on the complex phosphate LiNa5(PO4)2 (olympite structure), the indium ion stabilized high-temperature Na3PO4 phase (Na3(1 − x)In x (PO4); space group Fm [`3]\bar 3 m), the complex phosphate Na3In2(PO4)3, and the α and β phases of the compound Li3In2(PO4)3. A narrow region of melt was found in the vicinity of eutectic equilibria. All the phases detected in the system are derivatives of phases existing in the binary subsystems. Isovalent substitution of lithium for sodium in Na3In2(PO4)3 leads to a significant increase in the region of a NASICON-like solid solution.  相似文献   

20.
The phase and chemical compositions of the precipitates formed in the LiVO3-VOSO4-H2O system at initial pH within 1 ≤ pH ≤ 4 and 90°C were studied. The following phases were prepared: an α phase Li1.4(VO)1.3[H2V10O28] · nH2O and a β phase Li0.6 ? x H1.4 + x [V12O31 ? y/2] · nH2O (0 ≤ x ≤ 0.5, 1.3 ≤ y ≤ 2.0) with a layered structure. Li0.4V2O5 · H2O nanorods with the interlayer distance 10.30 ± 0.08 Å were synthesized at 180°C in an autoclave. The morphology, IR spectra, and main formation processes for these polyvanadates were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号