首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pentagonal-bipyramidal complexes [Co(DABPH)X(H(2)O)]X [X = NO(3) (1), Br (2), I (3)] were synthesized, and their magnetic behavior was investigated. Simulation of the magnetization versus temperature data revealed the complexes to be highly anisotropic (D ≈ +30 cm(-1)) and the magnitude of the anisotropy to be independent of the nature of the axial ligands. The reaction of 1 with K(3)[M(CN)(6)] (M = Cr, Fe) produces the pentametallic clusters [{Co(DABPH)}(3){M(CN)(6)}(2)(H(2)O)(2)] [M = Cr (4), Fe (5)]. Both clusters consist of three {Co(DABPH)} moieties separated by two {M(CN)(6)} fragments. In 4, the central and terminal Co(II) ions are bound to cyanide groups cis to one another on the bridging {Cr(CN)(6)}, whereas in 5, the connections are via trans cyanide ligands, resulting in the zigzag and linear structures observed, respectively. Magnetic investigation revealed ferromagnetic intramolecular interactions; however, the ground states were poorly isolated because of the large positive local anisotropies of the Co(II) ions. The effects of the local anisotropies appeared to dominate the behavior in 5, where the magnetic axes of the Co(II) ions were approximately colinear, compared to 4, where they were closer to orthogonal.  相似文献   

2.
A one-pot reactions of cobalt powder with iron(II) chloride in dimethylformamide (DMF; 1) or dimethyl sulfoxide (DMSO; 2) solutions of polydentate salicylaldimine Schiff base ligands (H(2)L(1), 1; H(4)L(2), 2) based on 2-aminobenzyl alcohol (1) or tris(hydroxymethyl)aminomethane (2), formed in situ, yielded two novel heterometallic complexes, [Co(III)(2)Fe(III)(2)(L(1))(6)]·4DMF (1) and [Co(III)(4)Fe(III)(4)(HL(2))(8)(DMSO)(2)]·18DMSO (2). Crystallographic investigations revealed that the molecular structure of 1 is based on a tetranuclear core, {Co(III)(2)Fe(III)(2)(μ-O)(6)}, with a chainlike metal arrangement, while the structure of 2 represents the first example of a heterometallic octanuclear core, {Co(III)(4)Fe(III)(4)(μ-O)(14)}, with a quite rare manner of metal organization, formed by two pairs of {CoFe(HL(2))(2)} and {CoFe(HL(2))(2)(DMSO)} moieties, which are joined by O bridges of the Schiff base ligands. Variable-temperature (1.8-300 K) magnetic susceptibility measurements showed a decrease of the μ(B) value at low temperature, indicative of antiferromagnetic coupling (J/hc = -32 cm(-1) in 1; J/hc = -20 cm(-1) in 2) between the Fe(III) magnetic centers in both compounds. For 2, three J constants between Fe(III) centers were assumed to be identical. High-frequency electron paramagnetic resonance spectra allowed one to find spin Hamiltonian parameters in the coupled-spin triplet and quintet states of 1 and estimate them in 2. The "outer" and "inner" Fe atoms in 2 appeared separately in the M?ssbauer spectra.  相似文献   

3.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

4.
The hydrothermal chemistry of a variety of M(II)SO(4) salts with the tetrazole (Ht) ligands 5,5'-(1,4-phenylene)bis(1H-tetrazole) (H(2)bdt), 5',5'-(1,1'-biphenyl)4,4'-diylbis(1H-tetrazole) (H(2)dbdt) and 5,5',5'-(1,3,5-phenylene)tris(1H-tetrazole) (H(3)btt) was investigated. In the case of Co(II), three phases were isolated, two of which incorporated sulfate: [Co(5)F(2)(dbdt)(4)(H(2)O)(6)]·2H(2)O (1·2H(2)O), [Co(4)(OH)(2)(SO(4))(bdt)(2)(H(2)O)(4)] (2) and [Co(3)(OH)(SO(4))(btt)(H(2)O)(4)]·3H(2)O (3·3H(2)O). The structures are three-dimensional and consist of cluster-based secondary building units: the pentanuclear {Co(5)F(2)(tetrazolate)(8)(H(2)O)(6)}, the tetranuclear {Co(4)(OH)(2)(SO(4))(2)(tetrazolate)(6)}(4-), and the trinuclear {Co(3)(μ(3)-OH)(SO(4))(2) (tetrazolate)(3)}(2-) for 1, 2, and 3, respectively. The Ni(II) analogue [Ni(2)(H(0.67)bdt)(3)]·10.5H(2)O (4·10.5H(2)O) is isomorphous with a fourth cobalt phase, the previously reported [Co(2)(H(0.67)bat)(3)]·20H(2)O and exhibits a {M(tetrazolate)(3/2)}(∞) chain as the fundamental building block. The dense three-dimensional structure of [Zn(bdt)] (5) consists of {ZnN(4)}tetrahedra linked through bdt ligands bonding through N1,N3 donors at either tetrazolate terminus. In contrast to the hydrothermal synthesis of 1-5, the Cd(II) material (Me(2)NH(2))(3)[Cd(12)Cl(3)(btt)(8)(DMF)(12)]·xDMF·yMeOH (DMF = dimethylformamide; x = ca. 12, y = ca. 5) was prepared in DMF/methanol. The structure is constructed from the linking of {Cd(4)Cl(tetrazolate)(8)(DMF)(4)}(1-) secondary building units to produce an open-framework material exhibiting 66.5% void volume. The magnetic properties of the Co(II) series are reflective of the structural building units.  相似文献   

5.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

6.
Anaerobic reaction of Co(O2CMe)2.4H2O with the thioether-containing acyclic pyrazine amide hexadentate ligand 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H2L1) (-CH2CH2- spacer between the two pyrazine amide tridentate coordination units) furnishes [CoII(L1)].MeOH (1a) having CoN2(pyrazine)N'2(amide)S2(thioether) coordination. It exhibits an eight-line EPR spectrum, attesting to a low-spin (S = 1/2) state of CoII. A similar reaction in air, however, furnishes [CoIII(L3a)(L3b)].2MeOH (2a) (S = 0), resulting from a C-S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyrazine)N'2(amide)S(thioether)S'(thiolate) coordination. On the other hand, the reaction of Co(O2CMe)2.4H2O with 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,5-dithiopentane (H2) (-CH2CH2CH2- spacer between the two pyrazine amide tridentate coordination units) in air affords a cobalt(II) complex [CoII(L2)].MeOH (1b.MeOH) (S = 1/2); its structurally characterized variety has the composition 1b.C6H6. Interestingly, 1b.MeOH undergoes facile metal-centred oxidation by aerial O2-H2O2-[Fe(eta5-C5H5)2][PF6], which led to the isolation of the corresponding cobalt(iii) complex [CoIII(L2)][ClO4] (2b). When treated with methanolic KOH, 2b affords a low-spin (S = 0) organocobalt(III) complex [Co(III)((L2')] (3). Structures of all complexes, except 1a, have been authenticated by X-ray crystallography. A five-membered chelate-ring forming ligand L1(2-) effects C-S bond cleavage and a six-membered chelate-ring forming ligand L2(2-) gives rise to Co-C bond formation, in cobalt(III)-coordinated thioether functions due to alpha C-H bond activation by the base. A rationale has been provided for the observed difference in the reactivity properties. The spectroscopic properties of the complexes have also been investigated. Cyclic voltammetry experiments in MeCN-CH2Cl2 reveal facile metal-centred reversible-to-quasireversible CoIV-CoIII (or a ligand-centred redox process; 2a), CoIII-CoII (1a, 1b.MeOH, 2a, 2b and 3), CoII-CoI (1a, 1b.MeOH, 2aand 2b), and CoI-Co0 (1a, 1b.MeOH and 2b) redox processes.  相似文献   

7.
In methanol or chloroform/methanol solutions, reactions of Cltpy or MeOtpy (Rtpy = 4'-R-2,2':6',2'-terpyridine) with CoX(2)·xH(2)O (X(-) = Cl(-), [OAc](-), [NO(3)](-) or [BF(4)](-)) result in the formation of equilibrium mixtures of [Co(Rtpy)(2)](2+) and [Co(Rtpy)X(2)]. A study of the solution speciation has been carried out using (1)H NMR spectroscopy, aided by the dispersion of signals in the paramagnetically shifted spectra; on going from a low- to high-spin cobalt(II) complex, proton H(6) of the tpy ligand undergoes a significant shift to higher frequency. For R = Cl and X(-) = [OAc](-), increasing the amount of CD(3)OD in the CD(3)OD/CDCl(3) solvent mixture affects both the relative proportions of [Co(Cltpy)(2)](2+) and [Co(Cltpy)(OAc)(2)] and the chemical shifts of the (1)H NMR resonances arising from [Co(Cltpy)(OAc)(2)]. When the solvent is essentially CDCl(3), the favoured species is [Co(Cltpy)(OAc)(2)]. For the 4'-methoxy-2,2':6',2'-terpyridine, the speciation of mono- and bis(terpyridine)cobalt(II) complexes depends upon the anion, solvent and ligand:Co(2+) ion ratio. The (1)H NMR spectrum of [Co(MeOtpy)(2)](2+) is virtually independent of anion and solvent. In contrast, the signals arising from [Co(MeOtpy)X(2)] depend on the anion and solvent. In the case of X(-) = [BF(4)](-), we propose that the mono(tpy) complex formed in solution is [Co(MeOtpy)L(n)](2+) (L = H(2)O or solvent, n = 1-3). The formation of mono(tpy) species has been confirmed by the solid state structures of [Co(Cltpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(NO(3)-O)(2)(OH(2))] and [Co(MeOtpy)Cl(2)]. The single crystal structure of the cobalt(III) complex [Co(Cltpy)Cl(3)]·CHCl(3) is also reported.  相似文献   

8.
The reactions of cobalt(II) complexes of tetraazamacrocyclic tropocoronand (TC) ligands with nitric oxide (NO) were investigated. When [Co(TC-5,5)] was allowed to react with NO(g), the {CoNO}(8) mononitrosyl [Co(NO)(TC-5,5)] was isolated and structurally characterized. In contrast, a {Co(NO)(2)}(10) species formed when [Co(TC-6,6)] was exposed to NO(g), and the nitrito [Co(NO(2))(TC-6,6)] complex was structurally and spectroscopically characterized from the reaction mixture. The {Co(NO)(2)}(10) species was assigned as the bis(cobalt dinitrosyl) complex [Co(2)(NO)(4)(TC-6,6)] by spectroscopic comparison with independently synthesized and characterized material. These results provide the first evidence for the influence of tropocoronand ring size on the nitric oxide reactivity of the cobalt(II) complexes.  相似文献   

9.
Seven new cobalt(II) phosphites, [Co(HPO(3))(C(14)H(14)N(4))(H(2)O)(2)].2H(2)O (1), [Co(HPO(3))(C(22)H(18)N(4))].H(2)O (2), [Co(2)(HPO(3))(2)(C(22)H(18)N(4))(2)H(2)O].H(2)O (3), [Co(2)(HPO(3))(2)(C(12)H(10)N(4))(1.5)H(2)O].1.5H(2)O (4), [Co(HPO(3))(C(14)H(14)N(4))(0.5)].H(2)O (5), [Co(HPO(3))(C(18)H(16)N(4))(0.5)] (6), and [Co(HPO(3))(C(18)H(16)N(4))(0.5)] (7) were synthesized in the presence of 1,2-bis(imidazol-1-ylmethyl)benzene (L1), 1,4-bis(benzimidazol-1-ylmethyl)benzene (L2), 1,3-bis(benzimidazol-1-ylmethyl)benzene (L3), 1,4-bis(1-imidazolyl)benzene (L4), 1,4-bis(imidazol-1-ylmethyl)benzene (L5), 1,4-bis(imidazol-1-ylmethyl)naphthalene (L6), and 1,5-bis(imidazol-1-ylmethyl)naphthalene (L7), respectively, and their structures were determined by X-ray crystallography. Compound 1 is a molecular compound in which two cobalt(II) ions are held together by double mu-O linkages. The inorganic framework of compounds 2 and 3 are composed of vertex-shared CoO(2)N(2)/CoO(3)N(2) and HPO(3) polyhedra that form four rings; these are further linked by an organic ligand to generate 2D sheets. Compounds 4 and 5 both have 1D inorganic structures, with the bifunctional ligands connected to each side of the ladder by coordination bonds to give 2D hybrid sheets. A 3D organically pillared hybrid framework is observed in 6 and 7. In 6, the stacking of the interlayer pillars gives rise to a small hydrophobic channel that extends through the entire structure parallel to the sheets. The temperature-dependent magnetic susceptibility measurements of these compounds show weak interactions between the metal centers, mediated through the mu-O and/or O-P-O linkages.  相似文献   

10.
Five Co(II) silicotungstate complexes are reported. The centrosymmetric heptanuclear compound K(20)[{(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)}(2)Co(H(2)O)(2)]47 H(2)O (1) consists of two {(B-beta-SiW(9)O(33)(OH))(beta-SiW(8)O(29)(OH)(2))Co(3)(H(2)O)} units connected by a {CoO(4)(H(2)O)(2)} group. In the chiral species K(7)[Co(1.5)(H(2)O)(7))][(gamma-SiW(10)O(36))(beta-SiW(8)O(30)(OH))Co(4)(OH)(H(2)O)(7)]36 H(2)O (2), a {gamma-SiW(10)O(36)} and a {beta-SiW(8)O(30)(OH)} unit enclose a mononuclear {CoO(4)(H(2)O)(2)} group and a {Co(3)O(7)(OH)(H(2)O)(5)} fragment. The two trinuclear Co(II) clusters present in 1 enclose a mu(4)-O atom, while in 2 a mu(3)-OH bridging group connects the three paramagnetic centers of the trinuclear unit, inducing significantly larger Co-L-Co (L=mu(4)-O (1), mu(3)-OH (2)) bridging angles in 2 (theta(av(Co-L-Co))=99.1 degrees ) than in 1 (theta(av(Co-L-Co))=92.8 degrees ). Weaker ferromagnetic interactions were found in 2 than in 1, in agreement with larger Co-L-Co angles in 2. The electrochemistry of 1 was studied in detail. The two chemically reversible redox couples observed in the positive potential domain were attributed to the redox processes of Co(II) centers, and indicated that two types of Co(II) centers in the structure were oxidized in separate waves. Redox activity of the seventh Co(II) center was not detected. Preliminary experiments indicated that 1 catalyzes the reduction of nitrite and NO. Remarkably, a reversible interaction exists with NO or related species. The hybrid tetranuclear complexes K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(3)(CH(3)COO)(3)]18 H(2)O (3) and K(5)Na(3)[(A-alpha-SiW(9)O(34))Co(4)(OH)(N(3))(2)(CH(3)COO)(3)]18 H(2)O (4) were characterized: in both, a tetrahedral {Co(4)(L(1))(L(2))(2)(CH(3)COO)(3)} (3: L(1)=L(2)=OH; 4: L(1)=OH, L(2)=N(3)) unit capped the [A-alpha-SiW(9)O(34)](10-) trivacant polyanion. The octanuclear complex K(8)Na(8)[(A-alpha-SiW(9)O(34))(2)Co(8)(OH)(6)(H(2)O)(2)(CO(3))(3)]52 H(2)O (5), containing two {Co(4)O(9)(OH)(3)(H(2)O)} units, was also obtained. Compounds 2, 3, 4, and 5 were less stable than 1, but their partial electrochemical characterization was possible; the electronic effect expected for 3 and 4 was observed.  相似文献   

11.
New ligands H(2)L2-H(2)L6 comprise the cyclen macrocycle which is N,N'-dialkylated at the 1,7-nitrogen atoms by three- and four-carbon alkyl chains bearing terminal sulfonic (C(3) H(2)L2), phosphonic (C(3) H(2)L3, C(4) H(2)L4) or carboxylic acid (C(3) H(2)L5, C(4) H(2)L6) groups, and HL7 is N-monoalkylated by a four-carbon sulfonic acid group. The ligands were prepared by alkylation of a bridged bisaminal intermediate. The syntheses of cobalt(III) complexes containing a tetradentate cyclen, N,N'-1,7-Me(2)cyclen, cyclam or L2-L7 ligand together with the bidentate 8-quinolinato (8QO(-)) ligand, of interest as it is a model for a more potent cytotoxic analogue, were investigated. Coordination of ligands (L) cyclen, N,N'-1,7-Me(2)cyclen or cyclam to cobalt(III) was achieved using Na(3)[Co(NO(6))] to form [Co(L)(NO(2))(2)](+). HOTf (trifluoromethansulfonic acid) was used to prepare the triflato complexes [Co(L)(OTf)(2)](+), followed by substitution of the labile triflato ligands to yield [Co(L)(8QO)](ClO(4))(2) isolated as the perchlorate salts. One further example containing cyclam and the 5-hydroxymethyl-8-quinolinato ligand was also prepared by this method. Complexes containing the pendant arm ligands L2-L6 were prepared from the cobalt precursor trans-[Co(py)(4)Cl(2)](+). Reaction of this complex with H(2)L2·4HCl and 8QOH produced [Co(L2)(8QO)] in one step and contains two deprotonated sulfonato pendant arms. The reaction of H(2)L3·4HBr with [Co(py)(4)Cl(2)](+) gave [Co(L3)]Cl in which L3 acts as a hexadenate ligand with the three-carbon phosphonato side chains coordinated to cobalt. H(2)L5·4HCl bearing three-carbon carboxylic acid pendant arms gave a similar result. The four-carbon ligands were coordinated to cobalt by reaction of [Co(py)(4)Cl(2)](+) with H(2)L4·4HBr or H(2)L6·4HCl to give [Co(HL4)Cl(2)] or [Co(H(2)L6)Cl(2)]Cl, which in turn with 8QOH gave the 8QO(-) complexes [Co(L4)(8QO)] bearing anionic phosphate pendant arms or [Co(H(2)L6)(8QO)]Cl(2) containing neutral carboxylic acid side chains. The reaction of Na(3)[Co(CO(3))(3)] with the mono-N-alkylated ligand HL7·4HCl and then HOTf gave [Co(L7)(CO(3))] and then in turn [Co(L7)(OTf)(2)]. The carbonato complex [Co(L7)(CO(3))] with [8QO](2)[SO(4)] produced [Co(L7)(CO(3))]. All complexes containing L7 bear an anionic sulfonato group on the side chain. The synthesis and characterisation of the six new ligands based on N-alkylated cylen ligand and the cobalt complexes outlined above are described, along with cyclic voltammograms of the 8QO(-) complexes and the molecular structures determined by X-ray crystallography of [Co(cyclen)(H(2)O)(2)](OTf)(3) (formed by aquation of the triflato complex), [Co(cyclen)(8QO)](ClO(4))(2), Co(L2)(8QO)·2H(2)O, Co(L4)(8QO)·6H(2)O and [Co(H(2)L6)Cl(2)]Cl·H(2)O. These demonstrate the coordination of the cyclen ligand in the folded anti-O,syn-N configuration with the N-alkylated nitrogens occupying apical positions.  相似文献   

12.
Three new isomorphic coordination polymers of Co(2+), Zn(2+) ions with flexible multicarboxylic acid ligand of the cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)L), [Co(4)L(2)(H(2)O)(8)]·3H(2)O (1), [Zn(4)L(2)(H(2)O)(8)]·3H(2)O (2) and [Co(0.8)Zn(3.2)L(2)(H(2)O)(8)]·3H(2)O (3), have been synthesized under hydrothermal conditions and by means of controlling the pH of the reaction mixtures (with an initial pH of 6.0 for 1, 4.0 for 2, and 5.0 for 3, respectively). In the crystal of 1, two crystallographically different Co(2+) ions (Co1 and Co2) form a negatively-charged coordination polymeric chain, which contains a centrosymmetric, linear, trinuclear Co(2+) cluster (Co(3)L(2)) subunit; another crystallographically independent Co(2+) ion (Co3) coordinated to six water molecules acts as a counter ions to link the neighboring coordination polymeric chains via intermolecular H-bond interactions. The Co(2+) ions in 1 were completely and partially replaced by Zn(2+) ions to give 2 and 3, respectively. Complex 3 shows a novel molecular alloy nature, due to the random distributions of the Co(2+) and Zn(2+) ions. Three isomorphic complexes exhibit distinct thermal decomposition mechanisms. The deprotonated cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid ligands decompose at 420-750 °C to give the residue CoO in 1, ZnO + C in 2 and CoO + ZnO in 3. Complex 1 shows a complicated magnetic behavior with co-existence of antiferromagnetic exchange interactions between neighboring Co(2+) ions as well as strong spin-orbital coupling interactions for each Co(2+) ion; complex 3 exhibits a magnetically isolated high-spin Co(2+) ion behavior with strong spin-orbital coupling interactions.  相似文献   

13.
The structures, luminescent and magnetic properties of three series of coordination polymers with formulas-{[Fe(3)Ln(2)(L(1))(6)(H(2)O)(6)]·xH(2)O}(n) (Ln = Pr-Er; 1-9), {[Co(3)Ln(2)(L(1))(6)(H(2)O)(6)]·yH(2)O}(n) (Ln = Pr-Dy, Yb; 10-17) and {[Co(2)Ln(L(2))(HL(2))(2)(H(2)O)(7)]·zH(2)O}(n) (Ln = Eu-Yb; 18-25) (H(2)L(1) = pyridine-2,6-dicarboxylic acid, H(3)L(2) = 4-hydroxyl-pyridine-2,6-dicarboxylic acid) were systematically explored in this contribution. [Fe(II)(HS)-L(1)-Ln(III)] (1-9) and [Co(II)-L(1)-Ln(III)] (10-17) series are isostructural, and display 3D porous networks with 1D nanosized channels constructed by Fe/Co-OCO-Ln linkages. Furthermore, two types of "water" pipes are observed in 1D channels. [Co(II)-L(2)-Ln(III)] (18-25) series exhibit 2D open frameworks based on double-stranded helical motifs, which are further assembled into 3D porous structures by intermolecular hydrogen bonds between hydroxyl groups. The variety of the resulting structures is mainly due to the HO-substitution effect. These 3D coordination polymers show considerably high thermal stability, and do not decomposed until 400 °C. The high-spin Fe(II) ion in [Fe(II)(HS)-L(1)-Ln(III)] was confirmed by X-ray photoelectron spectroscopy, M?ssbauer spectroscopy and magnetic studies. The luminescent spectra of coordination polymers associated with Sm(III), Eu(III), Tb(III) and Dy(III) were systematically investigated, and indicate that different d-metal ions in d-f systems may result in dissimilar luminescent properties. The magnetic properties of [Fe(II)(HS)-L(1)-Ln(III)] (3, 6, 7, 9, 13), [Co(II)-L(1)-Ln(III)] (15-17) and [Co(II)-L(2)-Ln(III)] (19-24) coordination polymers were also studied, and the χ(M)T values decrease with cooling. For the single ion behavior of Co(II) and Ln(III) ions, the magnetic coupling nature between Fe(II)(HS)/Co(II) and Ln(III) ions cannot be clearly depicted as antiferromagnetic coupling.  相似文献   

14.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

15.
Heteronuclear Ge(IV) complexonates with Co(II), Ni(II), and Zn(II) based on diethylenetri-aminepentaacetic acid (H5Dtpa) are synthesized for the first time. The composition of the complexes is found from the chemical analysis and thermogravimetry data. The coordination polyhedra of cobalt and nickel are determined by the analysis of the diffuse reflection spectra and effective magnetic moments. Information on the coordination of the polydentate ligand is obtained by the comparative analysis of the IR spectra of the synthesized complexes and previously structurally characterized compounds [Ge(OH)(H2Dtpa)] · H2O and [Cu{Ge(OH)(µ-HDtpa)}2] { 12H2O.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 572–575.Original Russian Text Copyright © 2005 by Martsinko, Seifullina, Verbetskaya.  相似文献   

16.
The bidentate ligands N-phenyl-o-phenylenediamine, H(2)((2)L(N)IP), or its analogue 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, ((4)L(N)IP), react with [Co(II)(CH(3)CO(2))(2)]4H(2)O and triethylamine in acetonitrile in the presence of air yielding the square-planar, four-coordinate species [Co((2)L(N))(2)] (1) and [Co((4)L(O))(2)] (4) with an S=1/2 ground state. The corresponding nickel complexes [Ni((4)L(O))(2)] (8) and its cobaltocene reduced form [Co(III)(Cp)(2)][Ni((4)L(O))(2)] (9) have also been synthesized. The five-coordinate species [Co((2)L(N))(2)(tBu-py)] (2) (S=1/2) and its one-electron oxidized forms [Co((2)L(N))(2)(tBu-py)](O(2)CCH(3)) (2 a) or [Co((2)L(N))(2)I] (3) with diamagnetic ground states (S=0) have been prepared, as has the species [Co((4)L(O))(2)(CH(2)CN)] (7). The one-electron reduced form of 4, namely [Co(Cp)(2)][Co((4)L(O))(2)] (5) has been generated through the reduction of 4 with [Co(Cp)(2)]. Complexes 1, 2, 2 a, 3, 4, 5, 7, 8, and 9 have been characterized by X-ray crystallography (100 K). The ligands are non-innocent and may exist as catecholate-like dianions ((2)L(N)IP)(2-), ((4)L(N)IP)(2-) or pi-radical semiquinonate monoanions ((2)L(N)ISQ)(*) (-), ((4)L(N)ISQ)(*) (-) or as neutral benzoquinones ((2) L(N)IBQ)(0), ((4) L(N)IBQ)(0); the spectroscopic oxidation states of the central metal ions vary accordingly. Electronic absorption, magnetic circular dichroism, and EPR spectroscopy, as well as variable temperature magnetic susceptibility measurements have been used to experimentally determine the electronic structures of these complexes. Density functional theoretical (DFT) and correlated ab initio calculation have been performed on the neutral and monoanionic species [Co((1)L(N))(2)](0,-) in order to understand the structural and spectroscopic properties of complexes. It is shown that the corresponding nickel complexes 8 and 9 contain a low-spin nickel(II) ion regardless of the oxidation level of the ligand, whereas for the corresponding cobalt complexes the situation is more complicated. Spectroscopic oxidation states describing a d(6) (Co(III)) or d(7) (Co(II)) electron configuration cannot be unambiguously assigned.  相似文献   

17.
Electronic structure, spin-state, and geometrical relationships for a series of pseudotetrahedral Co(II) aryloxide, siloxide, arylthiolate, and silylthiolate complexes supported by the tris(phosphino)borate [BP(3)] ligands [PhBP(3)] and [PhBP(i)()(Pr)(3)] ([PhB(CH(2)PPh(2))(3)](-) and [PhB(CH(2)P(i)()Pr(2))(3)](-), respectively) are described. Standard (1)H NMR, optical, electrochemical, and solution magnetic data, in addition to low-temperature EPR and variable temperature SQUID magnetization data, are presented for the new cobalt(II) complexes [PhBP(3)]CoOSiPh(3) (2), [PhBP(3)]CoO(4-(t)()Bu-Ph) (3), [PhBP(3)]CoO(C(6)F(5)) (4), [PhBP(3)]CoSPh (5), [PhBP(3)]CoS(2,6-Me(2)-Ph) (6), [PhBP(3)]CoS(2,4,6-(i)()Pr(3)-Ph) (7), [PhBP(3)]CoS(2,4,6-(t)()Bu(3)-Ph) (8), [PhBP(3)]CoSSiPh(3) (9), [PhBP(3)]CoOSi(4-NMe(2)-Ph)(3) (10), [PhBP(3)]CoOSi(4-CF(3)-Ph)(3) (11), [PhBP(3)]CoOCPh(3) (12), [PhBP(i)()(Pr)(3)]CoOSiPh(3) (14), and [PhBP(i)()(Pr)(3)]CoSSiPh(3) (15). The low-temperature solid-state crystal structures of 2, 3, 5-10, 12, and 15 are also described. These pseudotetrahedral cobalt(II) complexes are classified as featuring one of two limiting distortions, either umbrella or off-axis. Magnetic and spectroscopic data demonstrate that both S = (1)/(2) and S = (3)/(2) ground-state electronic configurations are accessible for the umbrella distorted structure type, depending on the nature of the X-type ligand, its denticity (eta(1) versus eta(3)), and the tripodal phosphine ligand employed. Off-axis distorted complexes populate an S = (1)/(2) ground-state exclusively. For those four-coordinate complexes that populate S = (1)/(2) ground states, X-ray data show two Co-P bond distances that are invariably shorter than a third Co-P bond. The pseudotetrahedral siloxides 2, 10, and 11 are exceptional in that they display gradual spin crossover in the solid state. The diamagnetic cobalt(III) complex {[PhBP(3)]CoOSiPh(3)}{BAr(4)} ({16}{BAr(4)}) (Ar = Ph or 3,5-(CF(3))(2)-C(6)H(3)) has also been prepared and structurally characterized. Accompanying electronic structure calculations (DFT) for complexes 2, 6, and {16}(+) support the notion of a close electronic structure relationship between these four-coordinate systems and octahedral, sandwich, and half-sandwich coordination complexes.  相似文献   

18.
The reactivity of cobalt(II) salts towards H(3)L (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) was studied in different reaction conditions. Accordingly, the interaction of cobalt(II) acetate with H(3)L in methanol gives rise to the discrete complex [Co(III)(2)L(OAc)(2)(OMe)]*1.5H(2)O.MeOH, 1. Reaction of cobalt(II) acetylacetonate with H(3)L in the presence of dicarboxylic acids was also investigated. Thus, when cobalt(II) acetylacetonate and H(3)L are mixed with terephthalic or malonic acid in 4 : 2 : 1 molar ratios, the mixed valent [Co(II/III)(2)L(acac)(p-O(2)CC(6)H(4)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*2H(2)O*2MeOH, 2 and [Co(II/III)(2)L(acac)(O(2)CCH(2)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*7H(2)O, complexes are isolated. Decreasing the pH of the medium, by addition of a second mol of dicarboxylic acid, leads to [Co(II/III)(2)L(O(2)CCH(2)CO(2))(MeOH)]*2MeOH, 4, while the reaction with terephthalic acid does not proceed. 1, 2 and 4 were crystallographically characterised and all the complexes are dinuclear, with hydrogen bonds that expand the initial nodes. The magnetic characterisation, as well as the NMR spectroscopy, indicates a diamagnetic nature for 1, in agreement with the presence of Co(III), showing the aerial oxidation suffered by the cobalt(II) ions. Nevertheless, are paramagnetic. Temperature variable magnetic measurements were recorded for the crystallographically characterised complexes 2 and 4 and these studies confirm the mixed valence Co(II)/Co(III) nature of the compounds. The best fits of the magnetic data give an axial distortion parameter Delta = 628.7 cm(-1) for 2 and 698.8 cm(-1) for 4, and spin-orbit coupling constant lambda = -117.8 cm(-1) for 2 and -107.0 cm(-1) for 4. Therefore, this study shows that the oxidation degree of the initial cobalt(ii) salt by atmospheric oxygen can be controlled according to the pH of the medium.  相似文献   

19.
Synthesis (hydrothermal and metathesis), characterization (UV-vis, IR, TG/DTA), single-crystal X-ray structures, and magnetic properties of three cobalt(II)-pyromellitate complexes, purple [Co(2)(pm)](n) (1), red [Co(2)(pm)(H(2)O)(4)](n) x 2nH(2)O (2), and pink [Co(H(2)O)(6)](H(2)pm) (3) (H(4)pm = pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid)), are described. 1 consists of one-dimensional chains of edge-sharing CoO(6) octahedra that are connected into layers via O-C-O bridges. The layers are held together by the pyromellitate (pm(4-)) backbone to give a three-dimensional structure, each ligand participating in an unprecedented 12 coordination bonds (Co-O) to 10 cobalt atoms. 2 consists of a three-dimensional coordination network possessing cavities in which unbound water molecules reside. This highly symmetric network comprises eight coordinate bonds (Co-O) between oxygen atoms of pm(4-) to six trans-Co(H(2)O)(2). 3 possesses a hydrogen-bonded sandwich structure associating layers of [Co(H(2)O)(6)](2+) and planar H(2)pm(2-). The IR spectra, reflecting the different coordination modes and charges of the pyromellitate, are presented and discussed. The magnetic properties of 1 indicate complex behavior with three ground states (collinear and canted antiferromagnetism and field-induced ferromagnetism). Above the Néel temperature (T(N)) of 16 K it displays paramagnetism with short-range ferromagnetic interactions (Theta = +16.4 K, mu(eff) = 4.90 mu(B) per Co). Below T(N) a weak spontaneous magnetization is observed at 12.8 K in low applied fields (H < 100 Oe). At higher fields (H > 1000 Oe) metamagnetic behavior is observed. Two types of hysteresis loops are observed; one centered about zero field and the second about the metamagnetic critical field. The critical field and the hysteresis width increase as the temperature is lowered. The heat capacity data suggest that 1 has a 2D or 3D magnetic lattice, and the derived magnetic entropy data confirm an anisotropic s(eff) = 1/2 for the cobalt(II) ion. Magnetic susceptibility data indicate that 2 and 3 are paramagnets.  相似文献   

20.
Carboxylate-bridged complexes of transition metals, M(II)=Mn(II), Fe(II), Co(II), Ni(II), Zn(II), were synthesised by reaction of M(II) salts with dl-malate and L-malate under hydrothermal conditions. These complexes form four series of compounds, which have been fully characterised structurally, thermally and magnetically. The crystal structures of the new chiral compounds, [Mn(L-mal)(H(2)O)] (1), [Fe(L-mal)(H(2)O)] (2), [Co(L-mal)(H(2)O)] (3) and [Zn(L-mal)(H(2)O)] (4) as well as those of the bimetallic analogues [Mn(0.63)Co(0.37)(L-mal)(H(2)O)] (5) and [Mn(0.79)Ni(0.21)(L-mal)(H(2)O)] (6) have been solved by single-crystal X-ray diffraction. The six L-malate monohydrates crystallise in the chiral space group P2(1)2(1)2(1) and consist in a three-dimensional network of metal(II) centres in octahedral sites formed by oxygen atoms. These structures were compared to those of the chiral trihydrate compounds [Co(L-mal)(H(2)O)]2 H(2)O (7), [Ni(L-mal)(H(2)O)]2 H(2)O (8) and [Co(0.52)Ni(0.48)(L-mal)(H(2)O)]2 H(2)O (9), which exhibit helical chains of M(II) centres, and those of dl-malate dihydrates [Co(dl-mal)(H(2)O)]H(2)O (10) and [Ni(dl-mal)(H(2)O)H(2)O (11) and trihydrate [Mn(L-mal)(H(2)O)]2 H(2)O (12) highlighting the great flexibility of the coordination by the malate ligand. UV/Vis spectroscopic results are consistent with octahedral coordination geometry of high-spin transition-metal centres. Extensive magnetic characterisation of each homologous series indicates rather weak coupling interaction between paramagnetic centres linked through carboxylate bridges. Curie-like paramagnetic, antiferromagnetic, ferromagnetic or weak ferromagnetic behaviour is observed and discussed on the basis of the structural features. The bimetallic compounds 5 and 6 represent new examples of chiral magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号