首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six copper complexes of Schiff base ligands containing 3,5-substituted-4-salicylideneamino-3,5-dimethyl-1,2,4-triazole have been synthesized and well characterized. The structures of complexes 1 and 2 were determined by X-ray crystal analysis. Fluorescence and potentiometric study indicated that in the physiological pH range, one ligand was dissociated from the complexes to form 1:1 mononucleus copper complexes. The complexes potently inhibit protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) and Src homology phosphatase 1 (SHP-1) with 3-4 fold selectivity against PTP1B over TCPTP and PTP-MEG2, and 3-9 fold over SHP-1, but display almost no inhibition against Src homology phosphatase 2 (SHP-2). Complex 1 inhibits PTP1B with a competitive model with K(i) of 30 nM. Substitution with small groups at the phenyl of the ligand does not obviously influence the inhibitory ability of the complexes.  相似文献   

2.
Five oxovanadium(iv) complexes, which were divided into two groups, [V(IV)O(bhbb, nhbb)(H(2)O)(2)] (tridentate ligands: H(2)bhbb = 2-(5-bromo-2-hydroxylbenzylideneamino)benzoic acid, ; H(2)nhbb = 2-(5-nitro-2-hydroxylbenzylideneamino)benzoic acid, ) and [V(IV)O(cpmp, bpmp, npmp)(2)] (bidentate ligands: Hcpmp = 4-chloro-2-((phenylimino)methyl)phenol, ; Hbpmp = 4-bromo-2-((phenylimino)methyl)phenol, ; Hnpmp = 4-nitro-2-((phenylimino)methyl) phenol, ) have been prepared and characterized by elemental analysis, infrared, UV-visible and electrospray ionization mass spectrometry. The coordination in [V(IV)O(bhbb)(H(2)O)(2)] () was confirmed by X-ray crystal structure analysis. The oxidation state of V(iv) with d(1) configuration in was confirmed by EPR. The speciation of VO/H(2)bhbb in methanol-aqueous solution was investigated by potentiometric pH titrations. The result indicated that the main species were [V(IV)O(bhbb)(OH)](-) and [V(IV)O(bhbb)(OH)(2)](2-) at the pH range 7.0-7.4. The structure-activity relationship of the vanadium complexes in inhibiting protein tyrosine phosphatases (protein tyrosine phosphatase 1B, PTP1B; T-cell protein tyrosine phosphatase, TCPTP; megakaryocyte protein-tyrosine phosphatase, PTP-MEG2; Src homology phosphatase 1, SHP-1 and Src homology phosphatase 2, SHP-2) was investigated. The oxovanadium(iv) complexes were potent inhibitors of PTP1B, TCPTP, PTP-MEG2, SHP-1 and SHP-2, but exhibited different inhibitory abilities over different PTPs. Complexes and displayed better selectivity to PTP1B over the other four PTPs. Kinetic data showed that complex inhibited PTP1B, TCPTP and SHP-1 with a noncompetitive inhibition mode, but a classical competitive inhibition mode for PTP-MEG2 and SHP-2. The results demonstrated that both the structures of vanadium complexes and the conformations of PTPs influenced PTP inhibition activity. The proper modification of the organic ligand moieties may result in screening potent and selective vanadium-based PTP1B inhibitors.  相似文献   

3.
Shakya R  Wang Z  Powell DR  Houser RP 《Inorganic chemistry》2011,50(22):11581-11591
The ligand binding preferences of a series of potentially pentadentate pyridylbis(aminophenol) ligands were explored. In addition to the previously reported ligands 2,2'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(1)) and 6,6'-(2-methyl-2-(pyridin-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (H(2)L(1-tBu)), four new ligands were synthesized: 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(2,4-dibromophenol) (H(2)L(1-Br)), 6,6'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(2-methoxyphenol) (H(2)L(1-MeO)), 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H(2)L(1-NO2)), and 2,2'-(2-phenylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H(2)L(2)). These ligands, when combined with copper(II) salts and base, form either tricopper(II) species or monocopper(II) species depending on the nucleophilicity of the phenol groups in the ligands. All copper complexes were characterized by X-ray crystallography, cyclic voltammetry, and spectroscopic methods in solution. The ligands in trimeric complexes [{CuL(1)(CH(3)CN)}(2)Cu](ClO(4))(2) (1), [{CuL(1)Cl}(2)Cu] (1a), and [{CuL(2)(CH(3)CN)}(2)Cu](ClO(4))(2) (1b) and monomeric complex [CuL(1-tBu)(CH(3)OH)] (2) coordinate in a tetradentate mode via the amine N atoms and the phenolato O atoms. The pyridyl groups in 1, 1a, and 2 do not coordinate, but instead are involved in hydrogen bonding. Monomeric complexes [CuL(1-Br)] (3a), [CuL(1-NO2)] (3b), and [CuL(1-MeO)Na(CH(3)OH)(2)]ClO(4) (3c) have their ligands coordinated in a pentadentate mode via the amine N atoms, the phenolato O atoms, and the pyridyl N atom. The differences in tetradentate vs pentadentate coordination preferences of the ligands correlate to the nucleophilicity of the phenolate donor groups, and coincide with the electrochemical trends for these complexes.  相似文献   

4.
制备了多齿大环配体1,4,7,10-四氮杂环十二烷(L1);1,4,8,11-四(2-羟乙基)-1,4,8,11-四氮杂环十四烷(L2)和无环多齿配体;3-(2-氨基环己氨基)-2-(2-氨基环己氨基甲基)丙酸(L3),4,7,10-十三烷二腈三氢氯化物(L4),2,2′-(1,2-二乙基-双((甲基二氮杂烷基)二乙醇(L5)and 1,1′-(1,2-二乙基-双((2-氨基乙基)二氮杂烷基))-2-二丙醇(L6),并用FTIR,NMR和MS进行了表征,用配有二极管阵列检测器、蠕动泵和pH计的UV-VIS光度仪,经分光光度滴定法测定了它们与Ni髤的配合物的稳定常数。将稳定常数的数据与配体的开链和环状结构特性进行了关联讨论。还讨论了侧基对配合物稳定常数的影响。  相似文献   

5.
The synthesis of two new diphosphonic acid ligands,[ethane‐1, 2‐diylbis(azanediyl)]bis[(4‐chlorophenyl)methylene]diphosphonic acid (L1P), [ethane‐1, 2‐diylbis(azanediyl)]bis[(4‐bromophenyl)methylene]diphosphonic acid (L2P), and their corresponding copper complexes, Cu2(L1P)2 ( 1 ) and Cu2(L2P)2 ( 2 ) are described herein. Complex 2 was structurally characterized with X‐ray single crystal diffraction. The structure of 2 consists of five‐coordinatecopper(II) ions with a distorted square pyramidal arrangement doubly bridged by OPO from phosphonate groups. The Cu–Cu distance is 4.7810(2) Å. The crystal packing is determined by interdinuclear hydrogen bonds, which lead to one‐dimensional chains. The results of thermogravimetric investigations (TG‐DTA), UV/Vis diffuse reflectance, infrared and (1H and 13C) NMR spectroscopy, as well as elemental analyses of compounds 1 and 2 are also presented.  相似文献   

6.
In this work we report the synthesis of two novel manganese complexes, [L1(3)Mn(II)(6)](ClO(4))(6) (1·(ClO(4))(6)) and [L2Mn(II)(2)(μ-OAc)(μ-Cl)](ClO(4))(2) (2·(ClO(4))(2)), where L1(2-) is the 2,2'-(1,3-phenylenebis(methylene))bis((2-(bis(pyridin-2-ylmethyl)amino)ethyl)azanediyl)diacetic acid anion and L2 is N1,N1'-(1,3-phenylenebis(methylene))bis(N2,N2'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine). The ligands Na(2)L1 and L2 are built on the same backbone, L2 only contains nitrogen donors, while two carboxylate arms have been introduced in Na(2)L1. The two complexes have been characterized by single-crystal X-ray diffraction, magnetic susceptibility, EPR spectroscopy, and electrochemistry. X-Ray crystallography revealed that 1 is a manganese(II) hexamer and 2 is a manganese(II) dimer featuring an unprecedented mono-μ-acetato, mono-μ-chlorido bridging motif. The ability of the complexes to catalyse H(2)O(2) disproportionation, thereby acting as models for manganese catalases, has been investigated and compared to the activity of two other related manganese complexes. The introduction of carboxylate donors in the ligands, leading to increased denticity, resulted in a drop in H(2)O(2) disproportionation activity.  相似文献   

7.
An asymmetrical bis-pyridine pendant-armed macrocyclic heterobinuclear complex, [ZnNiL](ClO4)2·CH3CN (H2L was derived from the condensation between 3,3′-((ethane-1,2-diylbis((pyridin-2-ylmethyl)azanediyl))bis(methylene))bis(2-hydroxy-5-methylbenzaldehyde) and 1.3-diaminopropane), has been synthesized and characterized by physico-chemical and spectroscopic methods. The asymmetric unit contains two complete macrocyclic complexes that are nevertheless quite similar to one another. The Zn–Ni separations, bridged by the two phenoxides, are 3.107 and 3.141 Ǻ, respectively. The phosphate hydrolysis catalyzed by the complex was investigated using bis(4-nitrophenyl)phosphate (BNPP) as the substrate. The catalytic rate constant (k cat) is 1.64 × 10−3 s−1 at pH 7.4 and 25 °C, which is 108-fold higher than that of the corresponding uncatalyzed reaction. The interaction between the complex and calf thymus (CT) DNA was investigated by UV–vis absorption, viscosity experiments, and cyclic voltammetry. The complex shows good binding propensity to calf thymus DNA via intercalation with a binding constant of 5 × 104 M−1. The agarose gel electrophoresis studies show that the complex has a concentration-dependent DNA cleavage activity.  相似文献   

8.
Six coordination compounds constructed by two structurally related flexible nitrogen-containing polycarboxylate ligands 2,2′-(2,2′-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methylene)bis(azanediyl)dibenzoic acid (H2L1) and 5,5′-(2,2′-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methylene)bis(azanediyl)diisophthalic acid (H4L2) have been synthesized: [Ni(H2O)6]?·?L1?·?(C2H5OH)0.5?·?H2O (1), [Co(L1)(L3)]?·?CH3OH (2), [Ni(L1)(L3)]?·?CH3OH (3), [Zn(L1)(L3)]?·?CH3OH (4), [Cd(L1)(L3)]?·?CH3OH (5), and [Zn(L2)0.5(phen)]?·?C2H5OH (6), where L3?=?3,4?:?9,10?:?17,18?:?23,24-tetrabenzo-1,12,15,26-tetraaza-5,8,19,22-tetraoxacyclooctacosan and phen?=?1,10-phenanthroline. The crystal structures have been determined by single-crystal X-ray diffraction. Compound 1 displays a discrete structure, which is further linked by hydrogen bonds to form a 2-D supramolecular layer. Compounds 25 display similar structures. These compounds possess 1-D meso-chain structures linked by L1 and metals. The C–H?···?π interactions from neighboring chains extend the chains in different directions, giving a 3-D plywood network. Compound 6 possesses 2-D layers, which are further linked by hydrogen-bonding interactions to generate a 3-D supramolecular architecture.  相似文献   

9.
The synthesis, redox behavior, and photophysical properties of a series of Ru(II) bipyridyl complexes having diimine ligands with phosphonate and phosphonic acid substituents are presented. The phosphonate-containing ligands examined include diethyl 4-(2,2'-bipyrid-4-yl)benzylphosphonate (bpbzp), diethyl 4-(2,2'-bipyrid-4-yl)-phenylphosphonate (bppp), and 4,4'-(diethyl phosphonato)-2,2'-bipyridine (bpdp), and the [(bpy)2Ru(L)](PF6)2 complexes of both the diethyl phosphonate and the phosphonic acid were prepared. The Ru(III/II) potentials are more positive for the phosphonate complexes than for the phosphonic acids, and the first reduction is localized on the phosphonate-containing ligand for the bppp and bpdp complexes. The first reduction of the phosphonic acid complexes is at more negative potentials and cannot be distinguished from bpy reduction. For the bppp and bpdp complexes luminescence arises from a Ru(d pi)-->bpy-phosphonate (pi*) MLCT state; the phosphonic acid complexes luminescence at higher energies from a MLCT state not clearly isolated on one ligand. Iron(III) and copper(II) complex with and very efficiently quench the luminescence of all the phosphonic acid complexes in nonaqueous solvents. The quenching mechanism is discussed on the basis of luminescence decay and picosecond transient absorption measurements.  相似文献   

10.
Abstract

A series of C-centered heteroscorpionate-based homoleptic manganese(II), nickel(II), and copper(II) complexes of type [M(L1–3)2] (19) have been synthesized by using the ligands (2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL1), (4-diethylamino-2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL2) and (5-bromo-2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL3). The geometric parameters of the complexes were determined using UV-vis and theoretical studies suggesting distorted octahedral geometry around metal(II) ion. Frontier molecular orbital analysis supports bioefficacy of the complexes. Antimicrobial activity of the metal(II) complexes were determined against two Gram(–ve) (Escherichia coli and Klebsiella pneumoniae) and two Gram(+ve) (Bacillus cereus and Staphylococcus aureus) bacteria, and three fungal (Candida albicans, Candida glabrata, and Candida krusei) strains. Antioxidant activity of nickel(II) and copper(II) complexes were evaluated against ABTS, DPPH, and H2O2 free radicals. In vitro cytotoxicity activity of nickel(II) and copper(II) complexes against human breast adenocarcinoma (MCF-7), cervical (HeLa), and lung (A549) cancer cell lines along with one normal human dermal fibroblasts (NHDF) cell line were carried out by MTT assay, which shows the potent activity of copper(II) complex 8 with respect to the standard drug cisplatin. Molecular docking studies evidence the interaction of complexes with cyclin-dependent kinase 2 receptor (CDK2).  相似文献   

11.
An important building block, diethyl [(5-amino-4-cyano-3-methylsulfanyl-pyrazol-1-yl)–(4-fluorophenyl)methyl] phosphonate (3) was efficiently synthesized via the condensation of 1-hydrazino-1-(4-fluorophenyl)methyl phosphonate (1) with 2-[bis(methylthio)methylene]malononitrile (2).3 reacted with triethyl orthoformate to afford diethyl [(4-cyano-5-ethoxymethyleneamino-3-methylsulfanyl-pyrazol-1-yl)-(4-fluorophenyl)methyl] phosphonate (4), which reacted with various acyl hydrazines in refluxing 2-methoxyethanol to provide the target compounds (5) in good yields directly. The results of preliminary bioassay indicated that compounds 5 possess potent herbicidal activity against the roots of monocotyledonous (barnyard grass) and dicotyledonous (oil rape) plants, and could be further developed as potential herbicides.  相似文献   

12.
Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η(6)-cym)(L(1))Cl]Cl (1, cym = p-cymene, L(1) = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η(6)-cym)(L(2))Cl]Cl (2, L(2) = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η(6)-cym)(L(3))Cl] (3, L(3) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1-3 and ligands L(1), L(2) and L(3), as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L(4)), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L(2) also shows good activity against both the chloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR(50)) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR(50) properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L(3) to ruthenium, to give a metal complex (3) with promising antimalarial activity.  相似文献   

13.
Journal of Structural Chemistry - The title compound, 1,1′-((1E,1′E)-(pyridine-3,4-diylbis(azanylylidene))bis(methanylylidene))bis (naphthalen-2-ol) (1), was synthesized and...  相似文献   

14.
Research on Chemical Intermediates - 2-[(1H-imidazol-3-ium-3-yl)methyl]-4-{bis[3-((1H-imidazol-3-ium-3-yl) methyl-(4-hydroxyphenyl]methylene}cyclohexa-2,5-dienone trihydrogen sulfate...  相似文献   

15.
A novel Schiff-base fluorescent probe 6,6’-((1E,1’E)-(ethane-1,2-diylbis(azaneylylidene))bis-(methaneylylidene))bis(3-(diethylamino)phenol)(L) was derived from the 2:1 M condensation of 4-(diethylamino)-2-hydroxybenzaldehyde with ethylenediamine and characterized by 1H NMR,13C NMR and FT-IR spectroscopies.The results of spectral analysis showed that the probe L is selective and sensitive to Cu2+.The detection limit of L is found to be 19 nmol·L-1.There...  相似文献   

16.
The interaction in two mixtures of two novel anionic gemini surfactants, sodium 2,2′-(6,6′-(ethane-1,2-diylbis(azanediyl)bis(4-(hexylamino)-1,3,5-triazine-6,2-diyl)bis(azanediyl)diethanesulfonate (C6-2-C6) and sodium 2,2′-(6,6′-(ethane-1,2-diylbis(azanediyl)bis(4-(octylamino)-1,3,5-triazine-6,2-diyl) bis(azanediyl) diethanesulfonate (C8-2-C8), and conventional anionic surfactants, sodium dodecyl sulfate (SDS), have been investigated in 0.1 M NaCl aqueous solutions. The mixed systems are C6-2-C6/SDS and C8-2-C8/SDS, and the mole factions (αG) of geminis are 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Mixtures of both C6-2-C6/SDS and C8-2-C8/SDS exhibit synergism in surface tension reduction efficiency and mixed micelle formation. But, all mixtures except C6-2-C6/SDS (αG = 0.7), C6-2-C6/SDS (αG = 0.9), and C8-2-C8/SDS (αG = 0.1) don't exhibit synergism in surface tension reduction effectiveness. The performances, such as wetting, emulsification, and dispersion were measured and the results showed all mixtures posses application properties.  相似文献   

17.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

18.
The 2,2'-biphenyl-bridged bis(2-aminophenol) ligand 4,4'-di-tert-butyl-N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-2,2'-diaminobiphenyl ((t)BuClipH(4)) reacts with MoO(2)(acac)(2) to form ((t)BuClipH(2))MoO(2), where the diarylamines remain protonated and bind trans to the terminal oxo groups. This complex readily loses water on treatment with pyridine or 3,5-lutidine to form mono-oxo complexes ((t)BuClip)MoO(L), which exhibit predominantly a cis-β geometry with an aryloxide trans to the oxo group. Exchange of the pyridine ligands is rapid and takes place by a dissociative mechanism, which occurs with retention of stereochemistry at molybdenum. Oxo-free alkoxide complexes ((t)BuClip)Mo(OR)(2) are formed from ((t)BuClipH(2))MoO(2) and ROH. Treatment of NMo(O(t)Bu)(3) with (t)BuClipH(4) results in complete deprotonation of the bis(aminophenol) and formation of a dimolybdenum complex ((t)BuClip)Mo(μ-N)(μ-NH(2))Mo((t)BuClip) containing both a bridging nitride (Mo-N = 1.848 ?, Mo-N-Mo = 109.49°) and a bridging amide group. The strong π bonding of this bis(amidophenoxide) ligand allows the molybdenum center to interconvert readily among species forming three, two, one, or zero π bonds from multiply bonded ligands.  相似文献   

19.
Herein are described the synthesis and characterization of the complexes of formula LAlR (where R = Cl and L = Salen (1), SalenCl (2), Acen (3) and where R = Me and L = Salen (4), SalenCl (5), Acen (6); Salen = N,N'-ethylenebis((2-hydroxyphenyl)methylimine), SalenCl = N,N'-ethylenebis((2-hydroxy-5-chlorophenyl)methylimine), Acen = N,N'-ethylenebis((2-hydroxyphenyl)-1-ethylimine)). The LAlCl derivatives dissolve in water and MeOH to yield the cationic complexes [LAl(H(2)O)(2)](+)Cl(-) (L = Salen (7), SalenCl (8), Acen (9)) and [LAl(MeOH)(2)](+)Cl(-) (L = Salen (10), SalenCl (11), Acen (12)), respectively. An alternative preparation of the cationic species involves the reaction of the LAlCl derivative with NaBPh(4). This leads to complexes of formula [LAl(MeOH)(2)](+)BPh(4)(-) (L = Salen (13), SalenCl (14), Acen (15)). Complexes 4-6 can be reacted with either MeOH or 4-chloro-3,5-dimethylphenol (Ph') to form complexes of general formula LAlOR (R = Me, L = Salen (16), SalenCl (17), Acen (18); R = Ph', L = Salen (19), SalenCl (20), Acen (21)). All of the compounds were characterized by IR, melting points, elemental analyses, and, when soluble, NMR. Additionally, the crystal structures of 7, 13, 15, and 18 were obtained.  相似文献   

20.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号