首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang H  Li Y  Xu S  Li Y  Zhou C  Fei X  Sun L  Zhang C  Li Y  Yang Q  Xu X 《Organic & biomolecular chemistry》2011,9(8):2850-2855
A novel rhodamine-based highly sensitive and selective colorimetric off-on fluorescent chemosensor for Hg(2+) ions is designed and prepared by using the well-known thiospirolactam rhodamine chromophore and furfural hydrazone as signal-reporting groups. The photophysical characterization and Hg(2+)-binding properties of sensor RS1 in neutral N, N-dimethylformamide (DMF) aqueous solution are also investigated. The signal change of the chemosensor is based on a specific metal ion induced reversible ring-opening mechanism of the rhodamine spirolactam. The response of the chemosensor for Hg(2+) ions is instantaneous and reversible. And it successfully exhibits a remarkably "turn on" response toward Hg(2+) over other metal ions (even those that exist in high concentration). Moreover, this sensor is applied for in vivo imaging in Rat Schwann cells to confirm that RS1 can be used as a fluorescent probe for monitoring Hg(2+) in living cells with satisfying results, which further demonstrates its value of practical applications in environmental and biological systems.  相似文献   

2.
A series of monostyryl boron dipyrromethenes appended with an NO(4), NO(2)S(2), N(3)O(4), or N(3)O(2)S(2)-type ligand have been prepared and characterised. While the UV-Vis spectra of the former three compounds in CH(3)CN/H(2)O (2?:?3 v/v) do not respond towards a wide range of metal ions, the derivative with an N(3)O(2)S(2)-ligand exhibits a highly selective and sensitive spectral response towards Hg(2+) ions. The absorption band is blue-shifted by 40 nm due to inhibition of the intramolecular charge transfer process upon metal complexation. The fluorescence is also turned on giving a strong emission band at 572 nm. The colour changes can be easily detected by the naked eye. The results suggest that this compound serves as a promising colourimetric and fluorescent sensor for Hg(2+) ions in this mixed aqueous medium.  相似文献   

3.
A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media was developed. The system, which utilizes an irreversible Hg2+-promoted oxadiazole forming reaction, responds instantaneously at room temperature in a 1:1 stoichiometric manner to the amount of Hg2+. The selectivity of this system for Hg2+ over other metal ions is remarkably high, and its sensitivity is below 2 ppb in aqueous solutions.  相似文献   

4.
本文以罗丹明B-酰肼和2-氯-3-喹啉醛经缩合反应得到新型的罗丹明B衍生物3,其结构经1H NMR,MS,元素分析表征.通过荧光光谱法研究了目标物3在CH3CN-H2O溶液中与金属离子的识别特性.结果表明:目标物3可作为荧光探针选择性识别Hg2+,识别过程是不可逆的.  相似文献   

5.
A highly sensitive fluorescent turn-on probe specific for mercury ion has been developed on the basis of mercury ion-promoted hydrolysis of a pyrene-1-carbaldehyde hydrazone (1). The chemical conversion of 1, catalyzed by Hg2+ ions, was studied by using UV, fluorescence and 1H NMR spectroscopy, which clearly showed the conversion of 1 to highly fluorescent compound 1-pyrenecarboxaldehyde (2).  相似文献   

6.
The first novel rhodamine B based sensor, rhodamine B hydrazide methyl 5-formyl-1H-pyrrole-2-carboxylate Schiff base (2) capable of detecting both Cu(2+) and Hg(2+) using two different detection modes has been designed and synthesized. The metal ion induced optical changes of 2 were investigated in MeOH:H(2)O (3:1) HEPES buffered solution at pH 7.4. Sensor 2 exhibits selective colorimetric recognition of Cu(2+) and fluorogenic recognition of Hg(2+) with UV-vis and fluorescence spectroscopy, respectively. Moreover, both of the Cu(2+) and Hg(2+) recognition processes are proven to be hardly influenced by other coexisting metal ions.  相似文献   

7.
Chen X  Nam SW  Jou MJ  Kim Y  Kim SJ  Park S  Yoon J 《Organic letters》2008,10(22):5235-5238
A Hg(2+)-selective rhodamine 6G derivative bearing thiolactone moiety was synthesized, and its crystal structure with Hg(2+) is presented to explain the binding mode. In addition, highly selective "off-on"-type fluorescent change upon the addition of Hg(2+) was also applied to bioimaging.  相似文献   

8.
In this study, the surface of polyamide (PA) films are electrostatically deposited with the carbon-coated silver (Ag@C) nanoparticles, resulting in a two-dimensional (2D) PA-Ag@C film substrate. The TEM images demonstrate that the nanoparticles were successful synthesized. By adjusting the pH of the system, the core–shell structure and the 2D SERS substrate work together to improve the sensitivity, stability, and repeatability of the substrate to be used in complex real-world water samples. The SERS enhancement effect and substrate uniformity were determined using rhodamine 6G (R6G), crystal violet (CV), and malachite green (MG). The results indicate that the 2D PA-Ag@C film substrate in this study has the optimal Raman effect at a system pH of 6. Under ideal pH conditions, the R6G detection limit (LOD) is as low as 10−10 M (D2 attenuation), and the Raman signal intensity deviation of the same substrate is maintained within 9.49%. Overall, the Raman signal of probe molecule on the fabricated PA-Ag@C film possesses excellent sensitivity, repeatability, and stability.  相似文献   

9.
The 1,8-naphthalimide sensor 1 was developed as a colorimetric and fluorescent sensor for anions. Being the first example of such anion sensors, where the 3-position of the naphthalimide ring is used to incorporate the anion recognition moiety, in this case a trifluromethyl derived aryl urea moiety, the sensors gave rise to significant changes in both the absorption and the emission spectra, which were both red shifted upon interacting with anions. The changes were most pronounced for fluoride, and to a lesser extent for acetate and hydrogen phosphate, in DMSO, making 1 a highly selective sensor for F.  相似文献   

10.
A novel fluorescent ratiometric chemosensor based on 4-pyren-1-yl-pyrimidine (PPM) has been designed and prepared for the detection of Hg2+ in the presence of other competing metal ions in acetonitrile. The photo exhibits fluorescence color change of PPM from blue to green without and with Hg2+, which red shift of wavelength about 105 nm in fluorescence emission spectra. It can serve as a highly selective chemodosimeter for Hg2+ with ratiometric and naked-eye detection. The photophysical properties of PPM confirmed a 2:1 (PPM–Hg2+) binding model and the spectral response toward Hg2+ was proved to be reversible.  相似文献   

11.
The design and synthesis of two novel fluorescent PET anion sensors is described, based on the principle of ‘fluorophore-spacer-(anion)receptor’. The sensors 1 and 2 employ simple diaromatic thioureas as anion receptors, and the fluorophore is a naphthalimide moiety that absorbs in the visible part of the spectrum and emits in the green. Upon recognition of anions such as F and AcO in DMSO, the fluorescence emission of 1 and 2 was ‘switched off’, with no significant changes in the UV-vis spectra. This recognition shows a 1:1 binding between the receptor and the anions. In the case of F, further additions of the anion, gave rise to large changes in the UV-vis spectra, where the λmax at 455 nm was shifted to 550 nm. These changes are thought to be due to the deprotonation of the 4-amino moiety of the naphthalimide fluorophore. This was in fact found to be the case, using simple naphthalimide derivatives such as 6. Sensors 1 and 2 can thus display dual sensing action; where at low concentrations, the fluorescence emission is quenched, and at higher concentrations the absorption spectra are modulated.  相似文献   

12.
A new probe for Cu(2+) based on the Cu(2+)- induced reversible ring-opening mechanism of the rhodamine spirolactam was described. It displayed a highly selective and sensitive "turn-on" fluorescent and colorimetric response toward Cu(2+).  相似文献   

13.
Kim HN  Nam SW  Swamy KM  Jin Y  Chen X  Kim Y  Kim SJ  Park S  Yoon J 《The Analyst》2011,136(7):1339-1343
In this paper, we report new rhodamine hydrazone derivatives bearing thiol and carboxylic acid groups as selective fluorescent and colorimetric chemosensors for Hg(2+). The ring-opening process of spirolactam enables the large fluorescent enhancement and colorimetric change upon the addition of Hg(2+). The sample containing Hg(2+) was mixed with one of the chemosensors in a microchannel where the sensor was examined using confocal laser scanning microscopy. A plot of the fluorescent intensities of both chemosensors versus the log concentration of Hg(2+) exhibited a linear response (r(2)=0.95) in the range of 1 nM-1 μM, and the detection limits were 1 nM and 4.2 nM, respectively. Both chemosensors also enable the visualization of Hg(2+) accumulated in the nematode Caenorhabditis elegans previously exposed to nanomolar concentrations of Hg(2+).  相似文献   

14.
A selective and sensitive fluorescent chemosensor for Hg2+, which was composed of two aminonaphthalimide fluorophores and a receptor of 2,6-bis(aminomethyl)pyridine, was synthesized through the reaction of 2,6-bis(chloromethyl)pyridine and N-[2-(2-hydroxyethoxy)ethyl]-4-piperazino-1,8-naphthalimide. The chemosensor showed an about 17-fold increase in fluorescence quantum yield upon addition of 1 equiv of Hg2+ in neutral buffer aqueous solution, and the other common metal ions did not notably disturb the detection of Hg2+.  相似文献   

15.
《中国化学快报》2023,34(4):107725
Extensive application of nuclear energy has caused widespread environmental uranium contamination. New detection approaches without complicated sample pretreatment and precision instruments are in demand for on-site and in-time determination of uranyl ions in environmental monitoring, especially in an emergency situation. In this work, a simple and effective fluorescent sensor (Z)-N'-hydroxy-4-(1,2,2-triphenylvinyl)benzimidamide (TPE-A) with aggregation-induced emission (AIE) character was established and studied. It could realize to detect UO22+ via quenching the fluorescence of its aggregation-induced emission, with good selectivity and sensitivity. Such strategy shows a wide linear range from 5.0 × 10?8 mol/L to 4.5 × 10?7 mol/L (R2 = 0.9988) with exceptional sensitivity reaching 4.7 × 10?9 mol/L, which is far below the limit for uranium in drinking water (30 μg/L, ca. 1.1 × 10?7 mol/L) stipulated by the WHO. A response time less than four minutes make it rapid for uranyl ion measurement. It was applied for detection of uranyl ion in spiked river water samples with recoveries in the range of 98.7%-104.0%, comparable to those obtained by ICP-MS. With the advantages of portable apparatus, rapid detection process and high sensitivity, TPE-A can serve as a promising fluorescent sensor for the detection of UO22+ in environmental water samples.  相似文献   

16.
Abstract

A new fluorescence probe 1 for sulfur dioxide derivatives has been developed which acts through nucleophilic addition of the derivatives and shows high stability, specificity, and sensitivity. In the presence of SO2 derivatives, the fluorescence intensity of probe 1 significantly decreases within a short time period of 40?s, along with a low detection limit of 0.32?µM. Fluorescence imaging capability of probe 1 was also investigated, showing clear detection of SO2 derivatives in living cells. The results indicate that this probe has a great potential for the detection of SO2 derivatives in broad biological and relevant samples.  相似文献   

17.
In this work, we design and synthesize the novel probe RC through introduction the 1-aza-4,13-dithia-15-crown-5 ring into the structure of rhodamine 6G hydrazide, where the N atom of crown ring is responsible for quenching of rhodamine fluorescence. The compound obtained behaves as multifunctional cation sensor providing selective fluorescent response to Au3+ and selective colorimetric response to Cu2+ ions in aqueous acetonitrile (1/1, v/v) at pH 7.0. The use of 10?5?M RC solution allowed reliable determination of target cations in the presence of a wide range of environmentally relevant ions with detection limits of 2?×?10?6?M and 5?×?10?7?M for gold and copper, respectively.  相似文献   

18.
A new fluoroionophore [E-4,4'-di(N-(2-pyridyl)amino)stilbene, E1] with a donor-acceptor-donor framework, which features a central stilbene (acceptor) fluorophore and two terminal pyridylamino (donor) ionophores, is reported. The probe displays an ultrasensitive fluorescence quenching response toward Hg(2+) in H(2)O/THF. Coordination of Hg(2+) to E1 affords a 2:1 complex, enabling the detection of Hg(2+) at a concentration as low as 4.4 × 10(-14) M. The interactions between the two species have been thoroughly characterized with UV-vis absorption spectroscopy, fluorescence spectroscopy, and nuclear magnetic resonance spectroscopy. Density functional theory calculations provide further insights into the nature of the fluorescence quenching response. In contrast, a fluorescent molecule with the donor-acceptor architecture, E-4-(N-(2-pyridyl)amino)stilbene (E4), exhibits a greatly attenuated fluorescence quenching response toward Hg(2+).  相似文献   

19.
Chen L  Lou T  Yu C  Kang Q  Chen L 《The Analyst》2011,136(22):4770-4773
An approach for mercury ions (Hg(2+)) sensing based on the Hg(2+)-induced aggregation of thymine (T)-SH-functionalized gold nanoparticles (AuNPs) has been reported. The T-SH ligands that we synthesized can easily be coupled to the surface of AuNPs through the Au-S bond and can recognize Hg(2+) with high selectivity by forming a T-Hg-T complex with strong affinity. For the T-SH-functionalized AuNPs (T-S-AuNPs) sensor, upon addition of Hg(2+), the formation of the T-Hg-T complex induces aggregation of T-S-AuNPs and results in a significant change of color and UV-Vis absorption spectra. Thus, our method can be used for the rapid, easy and reliable screening of Hg(2+) in aqueous solution, with high sensitivity (2.8 nM) and selectivity over competing analytes. The developed method is successfully applied to the sensing of Hg(2+) in real environmental samples.  相似文献   

20.
Li Y  Zhang X  Zhu B  Xue J  Zhu Z  Tan W 《The Analyst》2011,136(6):1124-1128
In this paper, CN-DPA was prepared as an effective colorimetric and fluorescent probe for copper ions (Cu(2+)) in aqueous solution. It exhibits good sensitivity and selectivity for Cu(2+) over other metal ions both in aqueous solution and on a simple colorimetric paper-made test kit. Upon addition of Cu(2+), a remarkable color change from purple to colorless was easily observed by the naked eye, and a fluorescence quenching was also determined. Furthermore, CN-DPA can be used to quantitatively detect Cu(2+). The linear range was 0-5 μM determined by absorption spectrometry. All these selective and sensitive results indicate that CN-DPA could meet the selective requirements for biomedical and environmental application and be sensitive enough to detect Cu(2+) in environmental water samples, even in drinking water, which has a limit of 20 μM defined by the U.S. Environmental Protection Agency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号