首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methods of galvanostatic intermittent titration, cyclic voltammetry, and electrode impedance spectroscopy are used to study the behavior of tungsten (VI) oxide film electrodes free of binding and conducting additives in the course of reversible lithium intercalation from nonaqueous electrolyte at 25°C. The studies are performed for electrodes with different degrees of crystallinity at the variation of the lithium concentration in intercalate from zero to 0.017 mol/cm3. Lithium diffusion coefficient is in the range of 10?11–10?16 cm2/s. The concentration dependences of the intercalation-layer transport parameters are analyzed, the equivalent circuit versions are discussed, and results obtained by different methods are compared.  相似文献   

2.
Understanding the mechanisms controlling the anisotropy of microetching is particularly critical as the scale of semiconductor devices shrink. Defining complex, dynamic chemical systems such as halogen etching require microscopic measurements combining kinetics, dynamics, surface layer composition and micromorphology on prototypical surfaces. This study is concerned with two important variables in addition to spontaneous chemical etching, the role of electronic defects induced by high level doping in producing site-specefic reaction and the enhancement of etching by irradiation at low fluences.

Substitutional defects introduced by selective doping significantly influence the rate of chlorine etching by forming shallow electronic states that are ionized at room temperature1. We have shown that chlorine sticking coeficients as well as laser-assisted etching are significantly affected by doping at very high dopant levels. Enhancement for n-type doping is consistent with the simple assumption that holes at the surface should enhance Si-Si surface bond breaking and in disagreement with the fact that heavily p-doped silicon has a higher chlorine sticking coefficient than n-doped material2.

Carrier effects generated by photoirradiation with above bandgap photons are considerably more complex than simple doping. A depletion layer and associated electric field are set up at the surface and minority carriers are preferentially swept to the surface. The type of photocarrier present at the surface is determined by both the doping and the photoirradiation.

Using photoinduced etching of heavily doped Si(100) and Si(111) by chlorine at low laser fluences, we studied the mechanism of photostimulated desorption using core-level photoemission and time-of-flight measurements of the photoproducts2. These results will be interpreted in terms of field-modified electron-hole transport together with carrier-modified chlorine adsorption and desorption.  相似文献   


3.
This paper reports properties of carbon nanoparticles used as anode of lithium-ion battery. It shows that carbon nanoparticles have a high first-charge capacity and good potential for cycling and, if properly modified, are a promising anode material for lithium-ion batteries. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 8, pp. 999–1001. The text was submitted by the authors in English.  相似文献   

4.
The specifics of electrochemical lithium intercalation into nanocrystalline ceria were studied. The lithium capacity of CeO2 − x is discovered to increase systematically as the nanoparticle size shifts down, indicating the potential of nanocrystalline ceria for use in electrochromic applications.  相似文献   

5.
The reaction mechanism of cell Li/PbS has been studied with coulombic titration, cyclic voltammetry and X-ray diffraction methods. It was found that in the first stage of discharge (0< y ≤1.5), the intercalation of lithium into lead sulfide took place. The X-ray diffraction patterns showed that the main crystalline structure of PbS remained unchanged after lithiation, and the lithium intercalated probably locates in the center of the cubic-interspace of the crystal. The intercalation free energy of Li into PbS forming LiPbS was found to be ?300.48 KJ·mol?1 (at 25°C). The chemical diffusion coefficient of lithium in LiyPbS (0<y≤1) was determined by electrochemical method to be about 10?11 cm2S-1.  相似文献   

6.
Interfaces between phenylacetylene (PA) monolayers and two silicon surfaces, Si(111) and Si(100), are probed by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and the results are analyzed using ab initio molecular orbital calculations. The monolayer systems are prepared via the surface hydrosilylation reaction between PA and hydrogen-terminated silicon surfaces. The following spectral features are obtained for both of the PA-Si(111) and PA-Si(100) systems: a broad π-π* shakeup peak at 292 eV (XPS), a broad first ionization peak at 3.8 eV (UPS), and a low-energy C 1s → π* resonance peak at 284.3 eV (NEXAFS). These findings are ascribed to a styrene-like π-conjugated molecular structure at the PA-Si interface by comparing the experimental data with theoretical analysis results. A conclusion is drawn that the vinyl group can keep its π-conjugation character on the hydrogen-terminated Si(100) [H:Si(100)] surface composed of the dihydride (SiH(2)) groups as well as on hydrogen-terminated Si(111) having the monohydride (SiH) group. The formation mechanism of the PA-Si(100) interface is investigated within cluster ab initio calculations, and the possible structure of the H:Si(100) surface is discussed based on available data.  相似文献   

7.
Lithium reduction at a graphite electrode in molten lithium chloride was studied at temperatures from 650 to 900 °C using cyclic voltammetry and chronoamperometry. It was found that, during cathodic polarization, lithium intercalation into graphite occurred before deposition of metallic lithium started. This process was confirmed to be rate-controlled by the diffusion of lithium in the graphite. When the cathodic polarization potential was more negative than that for metallic lithium deposition, exfoliation of graphite particles from the electrode surface was observed. This was caused by fast and excessive accumulation of lithium intercalated into the graphite, which produced mechanical stress too high for the graphite matrix to accommodate. The erosion process was abated once the graphite surface was covered by a continuous layer of liquid lithium. These results are of relevance to the mechanism of carbon nanotube and nanoparticle formation by electrochemical synthesis in molten lithium chloride.  相似文献   

8.
The values of diffusion coefficient (D) of lithium in thermoexpanded graphite during cathodic intercalation from aprotic electrolyte, and upon direct contact with lithium metal, are measured. In the first case galvanostatic switch-on curves were registered, in the second case the method of x-ray diffraction was used. In the both cases D was close to 10-10 cm2/s.Presented at the 3rd International Meeting "Advanced Batteries and Accumulators," June 16th–20th 2002, Brno, Czech Republic  相似文献   

9.
The intercalation of five lithium salts into the gibbsite and bayerite polymorphs of Al(OH)3 has been studied using in situ energy-dispersive X-ray diffraction. The kinetics and mechanisms of the reactions have been modeled using the Avrami-Erofe'ev model. The kinetic data suggest that the reaction mechanisms are predominantly nucleation controlled, although the intercalation of LiNO3 into bayerite and of Li2SO4 into gibbsite proceed via two-stage mechanisms, one part of which is diffusion controlled. All the reactions proceed directly from the host to the product, except for the intercalation of Li2SO4 into gibbsite where a more hydrated intermediate form of [LiAl2(OH)6]2SO4 x yH2O is generated prior to the final product.  相似文献   

10.
Dehydrative cyclocondensation processes for semiconductor surface modification can be generally suggested on the basis of well-known condensation schemes; however, in practice this approach for organic functionalization of semiconductors has never been investigated. Here we report the modification of hydrogen-terminated silicon surfaces by cyclocondensation. The cyclocondensation reactions of nitrobenzene with hydrogen-terminated Si(100) and Si(111) surfaces are investigated and paralleled with selected cycloaddition reactions of nitro- and nitrosobenzene with Si(100)-2x1. Infrared spectroscopy is used to confirm the reactions and verify an intact phenyl ring and C-N bond in the reaction products as well as the depletion of surface hydrogen. High resolution N 1s X-ray photoelectron spectroscopy (XPS) suggests that the major product for both cyclocondensation reactions investigated is a nitrosobenzene adduct that can only be formed following water elimination. Both IR and XPS are augmented by density functional theory (DFT) calculations that are also used to investigate the feasibility of several surface reaction pathways, which are insightful in understanding the relative distribution of products found experimentally. This novel surface modification approach will be generally applicable for semiconductor functionalization in a highly selective and easily controlled manner.  相似文献   

11.
12.
李永舫  吴浩青 《化学学报》1987,45(12):1147-1151
通过库伦滴定、三角波电位扫描和X射线衍射物相分析,研究了Li/PbS电池的阴极反应机理.发现在该电池放电的第一个阶段(放电深度小于1.5),阴极上发生的是锂嵌入硫化铅晶格的反应,并且锂嵌入后硫化铅的主晶格结构基本未变,锂进入了晶体的立方体间隙中心位置.测得锂嵌入硫化铅生成LiPbS的嵌入自由能为-300.48kJ.mol^-^1(25℃),锂在LiyPbS(0相似文献   

13.
The electronically excited states of the Si(100) surface and acetylene, benzene, and 9,10-phenanthrenequinone adsorbed on Si(100) are studied with time-dependent density functional theory. The computational cost of these calculations can be reduced through truncation of the single excitation space. This allows larger cluster models of the surface in conjunction with large adsorbates to be studied. On clean Si(100), the low-lying excitations correspond to transitions between the pi orbitals of the silicon-silicon dimers. These excitations are predicted to occur in the range 0.4-2 eV. When organic molecules are adsorbed on the surface, surface --> molecule, molecule --> surface, and electronic excitations localized within the adsorbate are also observed at higher energies. For acetylene and benzene, the remaining pipi* excitations are found to lie at lower energies than in the corresponding gas-phase species. Even though the aromaticity of 9,10-phenanthrenequinone is retained, significant shifts in the pipi* excitations of the aromatic rings are predicted. This is in part due to structural changes that occur upon adsorption.  相似文献   

14.
The bonding of the trimethylamine (TMA) and dimethylamine (DMA) with crystalline silicon surfaces has been investigated using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, and density-functional computational methods. XPS spectra show that TMA forms stable dative-bonded adducts on both Si(001) and Si(111) surfaces that are characterized by very high N(1s) binding energies of 402.2 eV on Si(001) and 402.4 eV on Si(111). The highly ionic nature of these adducts is further evidenced by comparison with other charge-transfer complexes and through computational chemistry studies. The ability to form these highly ionic charge-transfer complexes between TMA and silicon surfaces stems from the ability to delocalize the donated electron density between different types of chemically distinct atoms within the surface unit cells. Corresponding studies of DMA on Si(001) show only dissociative adsorption via cleavage of the N-H bond. These results show that the unique geometric structures present on silicon surfaces permit silicon atoms to act as excellent electron acceptors.  相似文献   

15.
The effects of temperature on lithium intercalation into non-graphitized carbonized cloth from various electrolytes have been studied. The open-circuit potential (o.c.p.) of the intercalates shifts in the negative direction as the temperature is raised. The average temperature coefficient of the o.c.p. is equal to −0.04 mV·K−1 in the range from −35 to +45 °C. Intercalation-deintercalation kinetics was studied by the galvanostatic technique. It was shown that this process is quasi-ohmic at room and higher temperatures and has activation-ohmic control at lower temperatures. The effective activation energy of intercalation-deintercalation is about 20kJ·mol−1. Intercalates are corroded in all electrolytes, the corrosion rate being drastically increased as the temperature is raised. The apparent activation energy of corrosion is 120–150 kJ·mol−1. The corrosion rate is suggested to be controlled by cathodic reduction of electrolyte components. Received: 11 April 1997 / Accepted: 8 September 1997  相似文献   

16.
Lithium and sodium have been topotactically inserted in the lattice of TaFe1.25Te3 by electrochemical procedures. The existence of electronically unequivalent sites occupied by tellurium atoms conditions a two-step insertion process. In each step, the alkali metal ions occupy empty sites in the structure which are coordinated by tellurium atoms of a different set of sites. The␣thermodynamic and kinetic parameters of Li x TaFe1.25Te3 and Na x TaFe1.25Te3 have been determined and compared with other inserted binary and ternary chalcogenides. The values of the free energy of intercalation are less negative than those previously reported for TaTe2 and close to those found for the misfit layer compound (PbS)1.13TaS2. The values of alkali metal ion diffusivity are closer to those reported for the binary telluride, due to the similarities in the atoms exposed to the interlayer space. Received: 14 October 1997 / Accepted: 14 November 1997  相似文献   

17.
Si(100) samples cut from a typical bar (100 mm in diameter) prepared using industrial technology are studied. Measurements of the electron work function (EWF) show that the size effects in these samples (a reduction in thickness along with a sample’s area and the EWF) detected earlier were due to nanostructure porosity that was buried by the technological treatment of a bar’s surface. This hidden nanoporosity is assumed to be a manifestation of the secondary crystal structure.  相似文献   

18.
Electron correlation effects associated with the dangling bond surface states of Si(111)-5×5, Si(111)-7×7 and Sn/Ge(111)-3×3 are analyzed. In all the cases, extensive LDA-calculations are performed and effective two-dimensional Hamiltonians are deduced. Our analysis of these Hamiltonians shows that: (a) the Si(111)-5×5 surface states exhibits a metal-insulator transition; (b) the Si(111)-7×7 surface shows important similarities with the Si(111)-5×5 case, but it has a dangling bond surface band having a metallic character; (c) finally, the Sn/Ge(111)-3×3 dangling bond surface bands also shows important correlation effects that are found, however, not to affect the metallic character of the surface bands.  相似文献   

19.
The closed and open carbon nanotube electrodes have been studied as a function of frequency and the open circuit cell potential. A comparison of these spectra reveals different behaviors depending on the form of the carbon nanotubes: for the closed carbon nanotubes the impedance spectra consists of only one arc in the high frequency, for the open carbon nanotubes the impedance spectra consists of two separated semicircles in the high frequency. Analysis based on plausible equivalent circuit models for the carbon nanotubes lead to evaluation the kinetic parameters for the various physicochemical processes occurring at the electrode/electrolyte interface.  相似文献   

20.
Comparative studies of three type of carbonaceous materials—the modified oxidized graphite, thermoexpanded graphite, and carbon paper—prior to and after galvanostatic cycling in 1 M LiClO4 solution in propylene carbonate-dimethoxyethane mixture are carried out using standard porosimetry. It was shown that the mean (effective) thickness of the passive film [solid electrolyte interface (SEI)] at the electrodes of the modified oxidized graphite and thermoexpanded graphite equals a few nanometers. The comparison of porosimetric and electrochemical data shows that the passive film comprises both lithium carbonate and alkylcarbonates. Additionally, this comparison allows corroborating the concept on the formation of polymer (or oligomer) component of the passive film at least at the thermoexpanded graphite electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号