首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用流变学方法研究了无机电解质KBr存在时,阴离子表面活性剂十二烷基聚氧乙烯(3)硫酸钠(SDES)水溶液中胶束的生长和结构。通过测量体系的稳态剪切粘度(η)和应力(σ)关系,得到零剪切粘度(η0)、复合粘度(|η^*|)、动态模量[储能模量(G')和损耗模量(G")、平台模量(G0)、结构松驰时间(τ)等流变学参数,并应用Cox-Merz规则和Cole-Cole图,发现在SDES/KBr体系中可以形成蠕虫状胶束网络结构,体系为假塑性流体,偏离Maxwell模型,具有非线性粘弹性,没有单一的结构松驰时间。  相似文献   

2.
Aqueous solutions of ionic surfactants with strongly binding counterions exhibit wormlike or network properties. The properties of anionic micelles of sodium dodecyltrioxyethylene sulfate (AES) in the presence of multivalent counterion Al3+ were investigated by dynamic rheological methods. The steady-shear viscosity and stress, the zero-shear viscosity, the complex viscosity, and the dynamic shear modulus have been determined as a function of the surfactant and salt concentrations. Some interesting and noticeable results have been obtained, which can express the micellar growth and structure. The formation of wormlike micelles or network structure in surfactant solutions becomes much easier with increasing surfactant and salt concentrations. The Cox-Merz rule and the Cole-Cole plot are not applicable perfectly to the systems studied. The nonlinear viscoelasticity and non-Newtonian behavior can be found in all solutions according to the comparison with the simple Maxwell model. The technique of freeze-fracture transmission electron microscopy (FF-TEM) was also applied to confirm the formation of these interesting structures.  相似文献   

3.
Rheological behavior of viscoelastic wormlike micelles in an aqueous system of mixed sodium dodecyl trioxyethylene sulfate (SDES)–monolaurin (ML) is presented. Dilute aqueous solution of SDES has a high fluidity and follows Newtonian liquid-like behavior due to formation of small globular type of micellar structure. Addition of lipophilic nonionic cosurfactant ML to dilute or semidilute solution of SDES decreases the interfacial curvature of the aggregates favoring one dimensional micellar growth, and hence, viscosity increases. After a certain concentration of ML, the elongated micelles get entangled with each other leading to the formation of viscoelastic wormlike micelles. The viscoelastic solution follows Maxwell model of a single stress relaxation mode at low-frequency region. Further addition of ML decreases the viscosity of the solution due to formation of micellar joints in the network structure. The viscosity of the viscoelastic wormlike micelles decreases upon heating, and the system with poor viscoelastic character is observed at higher temperatures.  相似文献   

4.
Aqueous solutions of anionic surfactant, sodium oleate (NaOA), have been studied by means of steady-state shear rheology and dynamic oscillatory technique. The micellar structure can be changed upon the addition of NaCl, Na2CO3 and NaCl/NaOH while NaOA concentration is maintained at 0.060 M. These systems except NaOA/NaCl show high viscosity and strong viscoelasticity. The hydroxide ion is very important for the formation of wormlike micelles. The anions of salts also have effect on the rheological properties of wormlike micelles. Three parameters: intersection frequency ωi, plateau modulus G0 and relaxation time τ are also discussed. The Maxwell model and Cole-Cole plot are applied to investigate the dynamic viscoelasticity of wormlike micelles. Variation in surfactant packing parameter RP can be used to explain the change of rheology and microstructure of the micelles.  相似文献   

5.
This paper reports a study on the aggregation and rheological behavior of the family of O, O’-bis(sodium 2-alkylcarboxylate)-p-dibenzenediol (referred to as Cm?2Cm, m?=?10, 12, 14, respectively) in aqueous solution using dynamic light scattering, 1H NMR and rheology measurements. The results showed that all three surfactants formed large network-like aggregates at low concentrations. However, C10?2C10 formed small compact micelles simultaneously but neither C12?2C12 nor C14?2C14 did. These network-like aggregates were transformed into the wormlike micelles with increasing the surfactant concentration. The length of alkyl tails was found to strongly affect the viscoelasticity of wormlike micellar solutions. From C10?2C10, C12?2C12 to C14?2C14 in turn, the system developed rapidly from the viscous fluid to typically viscoelastic solution and then to a solid-like gel. The scaling exponents of the concentration dependence of both zero-shear viscosity (η 0) and plateau elastic modulus (G) greatly exceeded the theoretic predictions, showing fast micellar growth and strong entanglements between the wormlike micelles. For C14?2C14 that had the longest alkyl tails in this series, the wormlike micelles formed at 140?mmol L?1 were quite long and the micellar reptation dominated over the scission and recombination. This system yielded a viscosity as high as 2.20?×?104 Pa?s at 25 °C.  相似文献   

6.
 The aim of this experimen-tal work is to investigate the mechanism responsible of the decrease of the zero shear viscosity at high inorganic salt content. We report the linear and some nonlinear rheological properties of aqueous worm-like micellar solutions of CTAB containing NaNO3 salt. The zero-shear viscosity η0 curve versus salt concentration exhibits a well-defined maximum. We choose two salt concentrations (low and high) having the same zero-shear viscosity, and carefully explore the rheological characteristics and their evolutions in (and around) these two situations. The experimental results presented here, without excluding the possibility of the connections, suggest the possibility that the decreasing of η0 is a result of the reduction in size of the worm-like micelles. Received: 16 February Accepted: 8 June 1998  相似文献   

7.
Amino acid-based anionic surfactant, N-dodecanoylglutamic acid, after neutralizing by 2, 2′, 2″-nitrilotriethanol forms micellar solution at 25 °C. Addition of cationic cosurfactants hexadecyltrimethylammonium chloride (CTAC), hexadecylpyridinium chloride (CPC), and hexadecylpyridinium bromide (CPB) to the semi-dilute solution of anionic surfactant micellar solutions favor the micellar growth and after a certain concentration, entangled rigid network of wormlike micelles are formed. Viscosity increases enormously ~4th order of magnitude compared with water. With further addition of the cosurfactants, viscosity declines and phase separation to liquid crystal occurs. The wormlike micelles showed a viscoelastic behavior and described by Maxwell model with a single stress-relaxation mode. The position of viscosity maximum in the zero-shear viscosity curve shifts towards lower concentration upon changing cosurfactant from CPB to CTAC via CPC; however, the maximum viscosity is highest in the CPB system showing the formation of highly rigid network structure of wormlike micelles. In all the systems, viscosity decays exponentially with temperature following Arrhenius type behavior.  相似文献   

8.
The growth and structure of the aqueous micellar solutions of a surface active ionic liquid, 1-hexadecyl-3-methylimidazolium bromide (C16mimBr), in the presence of an organic salt sodium tosylate (NaTos), were investigated by rheological measurements and freeze-fracture transmission electron microscopy at room temperature (298 K). As in some conventional ionic surfactant/salt aqueous systems, wormlike micelles and network structures could be formed in the C16mimBr/NaTos aqueous solutions, according to measurements of the zero-shear viscosity, the entanglement length, the average contour length, as well as application of the Cox-Merz empirical rule and Cole-Cole plots. FF-TEM images further confirmed that wormlike micelles were formed in these aqueous solutions. The wormlike micelles presented here would expand potential applications of ionic liquids in home care products, oilfield stimulation fluids, and nanobiotechnology.  相似文献   

9.
由碳酸钠诱导形成的油酸钠蠕虫状胶束的流变学性质   总被引:3,自引:0,他引:3  
曹泉  于丽  孙立新  郑利强  李干佐 《化学学报》2007,65(17):1821-1825
当Na2CO3浓度逐渐增加时, 用流变学的方法研究了阴离子表面活性剂油酸钠(NaOA)在溶液中从胶束转变成蠕虫状胶束的过程. 首先测量体系剪切粘度(η)和剪切速率的关系得到零剪切粘度(η0). 然后由动态振荡实验得到复合粘度(*|)、动态模量(储能模量G'、损耗模量G"和结构松弛时间τs)等物理量. 应用Cox-Merz规则和Cole-Cole图, 证明NaOA (0.040~0.080 mol/L)/Na2CO3 (0.25~0.50 mol/L)体系形成蠕虫状胶束, 且蠕虫状胶束的动态粘弹性在NaOA (0.050~0.080 mol/L)/Na2CO3 (0.35~0.45 mol/L)范围是符合Maxwell模型的线性粘弹性流体.  相似文献   

10.
We first prepared two types of CO2-responsive wormlike micelles based on N-butyldiethanolamine–sodium oleate (BDEA–NaOA) and N,N-diethyl butylamine–sodium oleate (DEBA–NaOA), respectively. And then, we compared the two different systems to investigate the effect of hydrogen bond on the properties of wormlike systems. The results of the pH and conductivity variation show that tertiary amine groups on BDEA and DEBA were ionized to quaternary ammonium salts after bubbling of CO2 into the systems, which work with OA? to form wormlike micelles based on electrostatic interaction. The results of rheological measurements exhibit that the viscosity and viscoelastic of the BDEA–NaOA were obviously superior to DEBA–NaOA. The dramatically difference of the two kind of wormlike micelles was due to the strong intermolecular hydrogen bond between the BDEA and NaOA. This indicates that the hydrogen bond could show great effect on the properties of the wormlike micelles. Finally, a reasonable mechanism was proposed based on the molecular structure, micelles assembly, and the intermolecular interactions.  相似文献   

11.
 The solubilization of styrene in micelles of the catanionic surfactant dodecyltrimethylammonium hydroxide (DTAOH)–n-dodecane-phosphonic acid (DPA) was studied by UV–Vis. spectrometry, as a function of the DTAOH:DPA proportion in the surfactant mixture. The styrene molecules are adsorbed at the surface of the micelles, with the vinyl group closer to the hydrocarbon core than the aromatic ring, which is oriented to the water. In micelles with an excess of DTAOH, the dielectric constant of the water surrounding the micelles was strongly affected by the non-neutralized –N(CH3)+ 3 groups at the Stem layer. In micelles with an excess of DPA, the –PO3H2 groups which are not neutralized by –N(CH3)+ 3, remain almost unionized and hydrogen-bonded. The effect of the micellar surface on the surrounding water dielectric constant dropped sharply. The dielectric constant in the hydrogen-bonded polar layer is ∼65, rising to the value of pure water very close to the micellar surface. Received: 2 September 1997 Accepted: 20 October 1997  相似文献   

12.
The rheological behavior of the aqueous solutions of mixed sulfate gemini surfactant with no spacer group, referred to as d‐C12S, and dodecyltrimethylammonium bromide (C12TABr) at a total concentration of 100 mmol·L−1 but different molar ratios of C12TABr to d‐C12S (α1) was investigated using steady rate and frequency sweep measurements. The wormlike micelles were formed over a narrow α1 range of 0.20–0.27. The viscoelastic solutions exhibited Maxwell fluid behavior. At the optimum molar ratio of 0.25, the zero‐shear viscosity was as high as 600 Pa·s and the length of the mixed wormlike micelle was about 0.45–0.85 µm. The present result provides an example to construct long wormlike micelles by anionic gemini surfactant.  相似文献   

13.
Aqueous solutions of the anionic surfactant potassium oleate (K-oleate) were studied using small-angle neutron scattering (SANS), steady-state rheology, and cryogenic transmission electron microscopy (cryo-TEM). The micellar structural changes induced by the addition of potassium chloride (KCl) and sodium polystyrenesulfonate (PSS) of different molecular weights were investigated. Upon addition of KCl, a transition from spherical to wormlike micelles was detected from the SANS data and confirmed by the cryo-TEM pictures. The rheological measurements revealed a strong dependence of the low-shear viscosity on the concentration of salt: a broad maximum in the viscosity curve was observed upon addition of KCl, characteristic of the growth of micelles into long worms, followed by branching. The addition of PSS to salt-free solutions of K-oleate had a significant effect on the scattering patterns, revealing partial growth of the spherical micelles into rodlike micelles. In contrast, in the presence of high salt concentrations, addition of PSS to solutions of wormlike micelles did not bring any noticeable modifications in the scattering. However, in the same salt conditions, a clear effect was observed on the low shear viscosity upon addition of PSS, which was found to depend significantly on molecular weight. This suggests a novel way of impacting the viscosity of solutions of wormlike micelles.  相似文献   

14.
The effect of the addition of sodium 4-styrenesulfonate (SSS) and KNO3 as well as temperature and shear rate on the structural transition of aqueous micellar solutions of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) was studied by viscosity. The effect of hydrocarbons on viscoelastic CTAB solutions was also examined. Possible mechanism for formation of CTAB wormlike micelles in the presence of sodium 4-styrenesulfonate (SSS) and KNO3 was discussed. The rapid increase in the apparent viscosity of CTAB solutions on the addition of SSS and KNO3 was due to the transition in micellar shape from spheres to wormlike ones. The rheological properties of CTAB solutions fit Maxwell model at low shear frequency. AFM image indicated a structure of transient network of CTAB/SSS/KNO3/H2O solution.  相似文献   

15.
Rheological properties of micellar solutions of a cationic Gemini surfactant, 2-hydroxypropyl-1,3-bis (dodecyldimethylammonium chloride), are studied as a function of aging time and salt addition. The results show that the self-aggregating behaviour in solution changes as a factor of time, probably due to intermolecular hydrogen bonds. The viscosity of the solution undergoes a series of visible changes so that the solution changes from a flow state to highly viscoelastic state, and finally, to a transparent solid, with a corresponding 4–6-fold increase in zero shear state viscosity. Rheology and freeze fracture transmission electron microscopy (FF-TEM) measurements show rod-like micelles at the beginning, which then change to wormlike micelles, and eventually to a quasi-gel-like network. Addition of an inorganic salt (NaCl) induces salting out, while the addition of an organic salt (NaSal) promotes micellar growth. At a fixed NaSal-to-surfactant molar ratio of 3:5, all solutions show Maxwell fluid behaviour and maximum zero-shear-rate viscosity; these trends can be attributed to the formation of a network structure between the cationic ions of the surfactant and Sal as the surfactant concentration increases. Crystal analysis further confirms the presence of structures linked by intermolecular hydrogen bonds.  相似文献   

16.
We reported two simple and novel CO2-responsive surfactant wormlike micellar systems consisting of commercial anionic surfactant sodium oleate (NaOA) and common hydrophobic tertiary amine N,N-dimethylcyclohexylamine (DMCHA), N,N-dimethylbenzylamine (DMBA). The conductivity, pH, and rheological measurements demonstrated the CO2-sensitive flowing behavior and property, which were attributed to the spherical-wormlike micelles transition, verified by cryogenic transmission electron microscopy (Cryo-TEM) and dynamic laser light scattering (DLS) measurements. Moreover, the transition can be easily cycled more than three times without deterioration of viscosity. Combined with the species distribution curve and 1H NMR spectra, a mechanism of the intermolecular electrostatic interaction and hydrophobic effects was proposed.  相似文献   

17.
The influence of ionic environment on the rheological properties of aqueous cetyltrimethylammonium p-toluene sulfonate (CTAT) solutions has been studied under three different flow fields: simple shear, opposed-jets flow and porous media flow. Emphasis was placed in the experiments on a range of CTAT concentration in which wormlike micelles were formed. It is known that these solutions exhibit shear thickening in the semi-dilute regime, which has been explained in terms of the formation of shear-induced, cooperative structures involving wormlike micelles. In simple shear flow, the zero shear viscosity exhibits first an increase with salt addition followed by a decrease, while the critical shear rate for shear thickening increases sharply at low salt contents and tends to saturate at relatively high ionic strengths. The results are explained in terms of a competition between micellar growth induced by salt addition and changes in micellar flexibility caused by ionic screening effects. Dynamic light scattering results indicate that micelles grow rapidly upon salt addition but eventually achieve a constant size under static conditions. These observations suggest that the wormlike micelles continuously grow with salt addition, but, as they become more flexible due to electrostatic screening, the wormlike coils tend to adopt a more compact conformation. The trends observed in the apparent viscosities measured in porous media flows seem to confirm these hypotheses-but viscosity increases in the shear thickening region-and are magnified by micelle deformation induced by the elongational nature of the local flow in the pores. In opposed-jets flow, the solutions have a behavior that is close to Newtonian, which suggests that the range of strain rates employed makes the flow strong enough to destroy or prevent the formation of cooperative micellar structures.  相似文献   

18.
The widespread use of wormlike micellar solutions is commonly found in household items such as cosmetic products, industrial fluids used in enhanced oil recovery and as drag reducing agents, and in biological applications such as drug delivery and biosensors. Despite their extensive use, there are still many details about the microscopic micellar structure and the mechanisms by which wormlike micelles form under flow that are not clearly understood. Microfluidic devices provide a versatile platform to study wormlike micellar solutions under various flow conditions and confined geometries. A review of recent investigations using microfluidics to study the flow of wormlike micelles is presented here with an emphasis on three different flow types: shear, elongation, and complex flow fields. In particular, we focus on the use of shear flows to study shear banding, elastic instabilities of wormlike micellar solutions in extensional flow (including stagnation and contraction flow field), and the use of contraction geometries to measure the elongational viscosity of wormlike micellar solutions. Finally, we showcase the use of complex flow fields in microfluidics to generate a stable and nanoporous flow-induced structured phase (FISP) from wormlike micellar solutions. This review shows that the influence of spatial confinement and moderate hydrodynamic forces present in the microfluidic device can give rise to a host of possibilities of microstructural rearrangements and interesting flow phenomena.  相似文献   

19.
The anionic surfactant sodium oleate (NaOA) can self-assemble in aqueous solution in the presence of counter-ion inorganic salts to form wormlike micelles (WLMs), which exhibited viscoelastic behavior. In this paper, KCl was used to induce the formation of wormlike micelles with sodium oleate. In this process, we found that the addition of N, N-dimethylethanolamine (DMEA) can destroy the structure of WLMs leading significant decrease of viscosity. However, after introducing CO2 into the ternary solution (KCl-NaOA-DMEA), the WLMs can be regenerated due to the electrostatic interaction between the protonated DMEA and the anionic surfactants. The addition of sodium hydroxide (NaOH) causes the electrostatic interaction between OA- and DMEAH+ be destroyed, which results in the wormlike micelles becoming spherical micelles of lower viscosity. The transition of WLMs with high viscosity and low viscosity spherical micelles can be repeated several times by using CO2 and NaOH.  相似文献   

20.
We report a reversible photoinduced fluid viscosity change. A small amount of a "photoswitchable" azobenzene-modified cationic surfactant (4-butylazobenzene-4'-(oxyethyl)trimethylammonium bromide, AZTMA) was added to a wormlike micellar solution of cetyltrimethylammonium bromide (CTAB) containing sodium salicylate (NaSal). The trans-AZTMA solution had a remarkably high viscosity as a result of the entangled network of wormlike micelles. UV light irradiation on the trans-AZTMA solution remarkably decreased the viscosity of the solution because the bulky structure of cis-AZTMA is likely to disrupt the network structure of wormlike micelles. This photoinduced viscosity change is perfectly reversible between the trans- and cis-AZTMA solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号