首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinovic acid-3-O-alpha-L-rhamnopyranoside (1), quinovic acid-3-O-beta-D-fucopyranoside (2), quinovic acid-3-O-beta-D-glucopyranosyl (1 --> 4)-beta-D-fucopyranoside (3), methyl gallate (4) and ethyl gallate (5) were isolated from the ethyl acetate extract of Bridelia ndellensis barks by fractionation. Compounds 1-3 showed significant inhibitory activity against snake venom phosphodiesterase-I.  相似文献   

2.
Four new triterpenoid saponins, designated as stelmatotriterpenosides E-H (1-4), together with three known compounds, asterbatanoside B (5), 2alpha,3beta,19alpha,23-tetrahydroxy-olean-12-en-28-oic acid-3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl ester (6) and 2alpha,3beta,19alpha,23-tetrahydroxy-urs-12-en-28-oic acid-3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl ester (7), were isolated from the stems of Stelmatocrypton khasianum. On the basis of chemical and spectral evidence, the structures of 1-4 were established as 2alpha,3beta,23-trihydroxy-olean-12-en-28-oic acid-3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (1), 2alpha,3beta,23-trihydroxy-urs-12-en-28-oic acid-3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (2), 2alpha,3beta,19alpha-trihydroxy-urs-12-en-28-oic acid-3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl ester (3), and 2beta,3beta,19alpha-trihydroxy-urs-12-en-24,28-dioic acid-24-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranosyl diester (4).  相似文献   

3.
Phytochemical investigations on the non-alkaloidal extracts of Mitragyna stipulosa bark has led to the isolation of a series of triterpenoids mainly consisting of quinovic acid ([structure: see text]) and its glycoside derivatives [structure: see text] and [structure: see text]. The other constituents isolated include alpha-amyrin, 3beta-acetyl ursolic acid and a mixture of oleanolic and ursolic acid and beta-sitosterol glucopyranoside. Their structures were identified by spectral and chemical studies and compounds [structure: see text] and [structure: see text] were, respectively, identified as quinovic acid 3-O-[beta-D-glucopyranoside] (quinovin glycoside C) and quinovic acid 3-O-[beta-D-quinovopyranoside]-27-O-[beta-D-glucopyranosyl] ester. Compounds [structure: see text] and [structure: see text] showed significant inhibitory activity against snake venom phosphodiesterase I.  相似文献   

4.
A total synthesis of tiacumicin B, a natural macrolide whose remarkable antibiotic properties are used to treat severe intestinal infections, is reported. The strategy is in part based on the prior synthesis of the tiacumicin B aglycone, and on the decisive use of sulfoxides as anomeric leaving groups in hydrogen-bond-mediated aglycone delivery (HAD). This new HAD variant permitted highly β-selective rhamnosylation and noviosylation. To increase convergence, the rhamnosylated C1–C3 fragment thus obtained was anchored to the C4–C19 aglycone fragment by adapting the Suzuki–Miyaura cross-coupling used for the aglycone synthesis. Ring-size-selective macrolactonization provided a compound engaged directly in the noviolysation step with virtually total β selectivity. The final efficient removal of all the protecting groups provided synthetic tiacumicin B.  相似文献   

5.
We report the first investigation of the chemical constituents of Zygophyllum melongena Bunge, a species growing in Mongolia. The quinovic acid glycosides 3-O-(β-D-glucopyranosyl)quinovic acid and 3-O-(β-D-glucopyranosyl)quinovic acid (28→1)-(β-D-glucopyranosyl) ester were identified in the chloroform fraction along with the flavonoid glycoside astragalin. The n-butanol fraction contained (+)-D-pinitol as the major component, a cyclitol with anti-diabetic properties. The structures of the isolated natural products were confirmed using ESI-MS and NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, NOESY and ROESY). This is the first report of the isolation of (+)-D-pinitol from the genus Zygophyllum.  相似文献   

6.
Three new oleanane-type triterpenoid saponins, ilexhainanoside C, D and E, all with 24, 28-dioic acid groups, were isolated from the leaves of Ilex hainanensis. They were 3beta-hydroxyolean-12-ene-24, 28-dioic acid-28-O-beta-D-glucopyranoside(1), 3beta, 19alpha-dihydroxyolean-12-ene-24, 28-dioic acid-28-O-beta-D-glucopyranoside(2) and 3beta, 29-dihydroxyolean-12-ene-24, 28-dioic acid-28-O-beta-D-glucopyranoside(3). The structures of these three new compounds were elucidated and complete assignments of the (1)H and (13)C NMR spectroscopic data were achieved by 1D and 2D NMR experiments [heteronuclear single quantum coherence (HSQC), HMBC and rotational nuclear Overhauser effect spectroscopy (ROESY)].  相似文献   

7.
A total synthesis of tiacumicin B, a natural macrolide whose remarkable antibiotic properties are used to treat severe intestinal infections, is reported. The strategy is in part based on the prior synthesis of the tiacumicin B aglycone, and on the decisive use of sulfoxides as anomeric leaving groups in hydrogen‐bond‐mediated aglycone delivery (HAD). This new HAD variant permitted highly β‐selective rhamnosylation and noviosylation. To increase convergence, the rhamnosylated C1–C3 fragment thus obtained was anchored to the C4–C19 aglycone fragment by adapting the Suzuki–Miyaura cross‐coupling used for the aglycone synthesis. Ring‐size‐selective macrolactonization provided a compound engaged directly in the noviolysation step with virtually total β selectivity. The final efficient removal of all the protecting groups provided synthetic tiacumicin B.  相似文献   

8.
We give a full account of the total synthesis of tiacumicin B (Tcn-B), a natural glycosylated macrolide with remarkable antibiotic properties. Our strategy is based on our experience with the synthesis of the tiacumicin B aglycone and on unique 1,2-cis-glycosylation steps. We used sulfoxide anomeric leaving-groups in combination with a remote 3-O-picoloyl group on the donors that allowed highly β-selective rhamnosylation and noviosylation that rely on H-bond-mediated aglycone delivery. The rhamnosylated C1–C3 fragment was anchored to the C4–C19 aglycone fragment by a Suzuki–Miyaura cross-coupling. Ring-size-selective Shiina macrolactonization provided a semiglycosylated aglycone that was engaged directly in the noviolysation step with a virtually total β-selectivity. Finally, a novel deprotection method was devised for the removal of a 2-naphthylmethyl ether on a phenol, and efficient removal of all the protecting groups provided synthetic tiacumicin B.  相似文献   

9.
From the aerial parts of Zygophyllum fabago, two new monosodium salts of sulfated derivatives of ursolic acid, along with two known quinovic acid glycosides were isolated. The structures of the new compounds were determined as (3β,4α)‐3,23,30‐trihydroxyurs‐20‐en‐28‐al 3,23‐di(sulfate) sodium salt (1 : 1) ( 1 ) and of (3β,4α)‐3,23,28‐trihydroxyurs‐20‐en‐30‐yl β‐D ‐glucopyranoside 3,23‐di(sulfate) sodium salt (1 : 1) ( 2 ) with the molecular formula C30H47NaO10S2 and C36H59NaO15S2, respectively. The structures of the known compounds were 3‐O‐(2‐O‐sulfo‐β‐D ‐quinovopyranosyl)quinovic acid 28‐β‐D ‐glucopyranosyl ester ( 3 ) and 3‐O‐(β‐D ‐glucopyranosyl)quinovic acid 28‐β‐D ‐glucopyranosyl ester ( 4 ) (quinovic acid=(3β)‐3‐hydroxyurs‐12‐ene‐27,28‐dioic acid). The structures of all these compounds were determined by using 1D‐ and 2D‐NMR spectroscopic techniques.  相似文献   

10.
A new triterpenoid, 2alpha,3alpha,24-trihydroxyurs-12-en-28-oic acid-28-O-beta-D-glucopyranosyl ester (4) along with four known triterpenoids, ursolic acid (1), 2alpha-hydroxyursolic acid (2), 2alpha,3alpha,24-trihydroxyurs-12-en-28-oic acid (3), and 2alpha,3alpha,19alpha,24-tetrahydroxyurs-12-en-28-oic acid-28-O-beta-D-glucopyranosyl ester (5), were isolated from the leaves of Prunus serrulata var. spontanea (Rosaceae). Compounds 3-5 showed ONOO(-) scavenging activity, whereas compounds 1 and 2 were virtually inactive.  相似文献   

11.
Conclusions The synthesis of evonoloside has been effected from cannogenol and L-rhamnose with a yield of 35%. It has been shown that when a primary alcohol group (at C19) and a secondary axial hydroxy group (at C3) are present in the aglycone, to introduce the sugar component at C3 it is desirable first to protect the primary OH group by the partial acetylation of the aglycone.Khimiya Prirodnykh Soedinenii, Vol. 5, No. 1, pp. 20–22, 1969  相似文献   

12.
Cheng ZH  Yu BY  Cordell GA  Qiu SX 《Organic letters》2004,6(18):3163-3165
[reaction: see text] Quinovic acid glycosides were microbially deglycosylated by a Nocardia sp. to their aglycon quinovic acid and its biogenetic counterpart, cincholic acid (3), via an unprecedented carbon skeleton rearrangement involving a methyl group migration. The structures of the metabolites were established by ESI-LC/MS and 2D-NMR techniques.  相似文献   

13.
Eleven triterpenoid saponins (1-11) were isolated from Stauntonia chinensis DC. (Lardizabalaceae), including five new compounds, yemuoside YM(21-25) (1-3, 6, 7) structures of which were elucidated by chemical methods and a combination of MS, 1D- and 2D- NMR experiments including DEPT, (1)H--(1)H COSY, HSQC, HMBC, TOCSY, and NOESY as 3-O-alpha-L-arabinopyranosyl-(1 --> 3)-[alpha-L-rhamnopyranosyl-(1 --> 2)-]alpha-L-arabinopyranosyl-akebonicacid-28-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (1), 3-O-beta-D-xylopyranosyl-(1 --> 3)-alpha-L-rhamnopyranosyl-(1 --> 2)-alpha-L-arabinopyranosyl-akebonic acid-28-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (2), 3-O-beta-D-glucopyranosyl-(1 --> 3)-alpha-L-arabinopyranosyl-akebonic acid-28-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (3), 3-O-alpha-L-arabinopyranosyl-(1 --> 3)-[alpha-L-rhamnopyranosyl-(1 --> 2)-]alpha-L-arabinopyranosyl-akebonic acid-28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (6), 3-O-alpha-L-arabinopyranosyl-(1 --> 3)-[alpha-L-arabinopyranosyl-(1 --> 2)-]alpha-L-arabinopyranosyl-akebonic acid-28-O-beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl ester (7).  相似文献   

14.
Biotransformation of oleanolic acid (OA) by Circinella muscae AS 3.2695 was investigated. Nine hydroxylated and glycosylated metabolites (1–9) were obtained. Their structures were elucidated as 3β,7β-dihydroxyolean-12-en-28-oic acid (1), 3β,7β,21β-trihydroxyolean-12-en-28-oic acid (2), 3β,7α,21β-trihydroxyolean-12-en- 28-oic acid (3), 3β,7β,15α-trihydroxyolean-12-en-28-oic acid (4), 7β,15α-dihydroxy- 3-oxo-olean-12-en-28-oic acid (5), 7β-hydroxy-3-oxo-olean-12-en-28-oic acid (6), oleanolic acid-28-O-β-D-glucopyranosyl ester (7), 3β,21β-dihydroxyolean-12-en-28- oic acid-28-O-β-D-glucopyranosyl ester (8), and 3β,7β,15α-trihydroxyolean-12-en- 28-oic acid-28-O-β-D-glucopyranosyl ester (9) by spectroscopic analysis. Among them, compounds 4 and 9 were new compounds. In addition, anti-inflammatory activities were assayed and evaluated for the isolated metabolites. Most of the metabolites exhibited significant inhibitory activities on lipopolysaccharides-induced NO production in RAW 264.7 cells.  相似文献   

15.
From the dried roots of Neonauclea sessilifolia (Rubiaceae), two new triterpenoid saponins, 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-quinovopyranosyl quinovic acid (1) and 3-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-quinovopyranosyl pyrocincholic acid 28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (2), were isolated, together with five known saponins. The structures of the new saponins were determined by spectroscopic and chemical means.  相似文献   

16.
Gymnemagenin, the aglycone obtained from gymnemic acid by fermentative degradation and alkaline hydrolysis, is probably a new hexahydroxy-triterpene. The proposed structures are derived mainly from data obtained by physical methods. Gymnemagenin is probably a 3β,15α(or 16β), 21β,22α,23,28- or 3β,15α,16β,21β(or 22α), 23,28-hexahydroxy-olean-12-ene. Further experimental information is necessary for decision concerning the correct structure.  相似文献   

17.
Racemic 11-dehydroaldosterone (rac.-18-oxo-11-dehydrocorticosterone) is prepared starting from the 3, 3; 20, 20-bisethylene acetal of the racemic 3, 20-dioxo-11β, 21-dihydroxy-Δ-pregnene-18-oic acid-(18 → 11β)-lactone, an intermediate obtained previously in the first total synthesis of aldosterone. A cyclic 18(21)-hemiacetal structure is deduced for the new corticosteroid from spectroscopic and chemical evidence.  相似文献   

18.
The diastereospecific chemical syntheses of uridine-2',3',4',5',5' '-(2)H(5) (21a), adenosine-2',3',4',5',5' '-(2)H(5) (21b), cytidine-2',3',4',5',5' '-(2)H(5)(2)H(5) (21c), and guanosine-2',3',4',5',5' '-(2)H(5) (21d) (>97 atom % (2)H at C2', C3', C4', and C5'/C5' ') have been achieved for their use in the solution NMR structure determination of oligo-RNA by the Uppsala "NMR-window" concept (refs 4a-c, 5a, 6), in which a small (1)H segment is NMR-visible, while the rest is made NMR-invisible by incorporation of the deuterated blocks 21a-d. The deuterated ribonucleosides 21a-d have been prepared by the condensation of appropriately protected aglycone with 1-O-acetyl-2,3,5-tri-O-(4-toluoyl)-alpha/beta-D-ribofuranose-2,3,4,5,5'-(2)H(5) (19), which has been obtained via diastereospecific deuterium incorporation at the C2 center of appropriate D-ribose-(2)H(4) derivatives either through an oxidation-reduction-inversion sequence or a one-step deuterium-proton exchange in high overall yield (44% and 24%, respectively).  相似文献   

19.
Synthesis of two ent-kaurane diterpene glycosides, steviol 19-O-β-D-glucopyranosiduronic acid (steviol glucuronide, 5), and 13-hydroxy ent-kaur-16-en-19-oic acid-β-D-glucopyranosyl ester (7) has been achieved from a common starting material, steviol, using phase transfer catalyst. Also, synthesis of an additional 17-nor-ent-kaurane glycoside, namely 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester (10) was performed using the starting material isosteviol and similar synthetic methodology. Synthesis of all three steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR as well as mass spectral (MS) data.  相似文献   

20.
The genus Biondia having six species is exclusively distributed in China. But none of them was investigated in the aspect of phytochemistry before this work. From the view of plant taxonomy, the genus Biondia in the Trib. Asclepiadeae is close to the genus Cynanchum, and the plants of the latter mainly contain C21-steroids. In order to investigate whether the plants of the genus Biondia have C21-steroidal compounds and what kind of skeleton they may have, the whole plant of Biondia insigni…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号