首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The structures, energetics, spectroscopies, and isomerization of various doublet Si2CP species are explored theoretically. In contrast to the previously studied SiC2N and SiC2P radicals that have linear SiCCN and SiCCP ground states, the title Si2CP radical has a four-membered-ring form cSiSiPC 1 (0.0 kcal/mol) with Si-C cross-bonding as the ground-state isomer at the CCSD(T)/6-311G(2df)//B3LYP/6-311G(d)+ZPVE level, similar to the Si2CN radical. The second low-lying isomer 2 at 11.6 kcal/mol has a SiCSiP four-membered ring with C-P cross-bonding, yet it is kinetically quite unstable toward conversion to 1 with a barrier of 3.5 kcal/mol. In addition, three cyclic species with divalent carbene character, i.e., cSiSiCP 7, 7' with C-P cross-bonding and cSiCSiP 8 with Si-Si cross-bonding, are found to possess considerable kinetic stability, although they are energetically high lying at 44.4, 46.5, and 41.4 kcal/mol, respectively. Moreover, a linear isomer SiCSiP 5 at 44.3 kcal/mol also has considerable kinetic stability and predominantly features the interesting cumulenic /Si=C=Si=P/* form with a slight contribution from the silicon-phosphorus triply bonded form /Si=C*-Si[triple bond]P/. The silicon-carbon triply bonded form *Si[triple bond]C-Si[triple bond]P/ has negligible contribution. All five isomers are expected to be observable in low-temperature environments. Their bonding nature and possible formation strategies are discussed. For relevant species, the QCISD/6-311G(d) and CCSD(T)/6-311+G(2df) (single-point) calculations are performed to provide more reliable results. The calculated results are compared to those of the analogous C3N, C3P, SiC2N, and Si2CN radicals with 17 valence electrons. Implications in interstellar space and P-doped SiC vaporization processes are also discussed.  相似文献   

3.
The cheletropic decompositions of 1-nitrosoaziridine (1), 1-nitroso-Delta(3)-pyrroline (2), 7-nitroso-7-azabicyclo[2.2. 1]hepta-2,5-diene (3), and 6-nitroso-6-azabicyclo[2.1.1]hexa-4-ene (4) have been studied theoretically using high level ab initio computations. Activation parameters of the decomposition of nitrosoaziridine 1 were obtained experimentally in heptane (DeltaH()(298) = 18.6 kcal mol(-)(1), DeltaS()(298) = -7.6 cal mol(-)(1) K(-)(1)) and methanol (20.3 kcal mol(-)(1), 0.3 cal mol(-)(1) K(-)(1)). Among employed theoretical methods (B3LYP, MP2, CCD, CCSD(T)//CCD), the B3LYP method in conjunction with 6-31+G, 6-311+G, and 6-311++G(3df,2pd) basis sets gives the best agreement with experimental data. It was found that typical N-nitrosoheterocycles 2-4 which have high N-N bond rotation barriers (>16 kcal mol(-)(1)) extrude nitrous oxide via a highly asynchronous transition state with a planar ring nitrogen atom. Nitrosoaziridine 1, with a low rotation barrier (<9 kcal mol(-)(1)) represents a special case. This compound can eliminate N(2)O via a low energy linear synperiplanar transition state (DeltaH()(298) = 20.6 kcal mol(-)(1), DeltaS()(298) = 2.5 cal mol(-)(1) K(-)(1)). Two higher energy transition states are also available. The B3LYP activation barriers of the cheletropic fragmentation of nitrosoheterocycles 2-4 decrease in the series: 2 (58 kcal mol(-)(1)) > 3 (18 kcal mol(-)(1)) > 4 (12) kcal mol(-)(1). The relative strain energies increase in the same order: 2 (0 kcal mol(-)(1)) < 3 (39 kcal mol(-)(1)) < 4 (52 kcal mol(-)(1)). Comparison of the relative energies of 2-4 and their transition states on a common scale where the energy of nitrosopyrroline 2 is assumed as reference indicates that the thermal stability of the cyclic nitrosoamines toward cheletropic decomposition is almost entirely determined by the ring strain.  相似文献   

4.
Ab initio MP2/6-311G and QCISD(T)/6-311G levels as well as Gaussian-2 theory were used to perform a comparative study of the structures and stabilities of the ethane dication C(2)H(6)(2+) and its silicon analogues Si(2)H(6)(2+) and CSiH(6)(2+). Similar to previous HF/6-31G results, our present calculations also indicate that the two-electron three-center (2e-3c) bonded carbonium-carbenium structure 1 is more stable than the doubly hydrogen bridged diborane-type structure 2 by about 12 kcal/mol. For the silicon analogue Si(2)H(6)(2+) the calculations, however, indicate that the 2e-3c bonded siliconium-silicenium structure 8 is about 9 kcal/mol less stable than doubly hydrogen bridged structure 9. Similar results were also computed for carbon-silicon mixed CSiH(6)(2+) dication structures. These studies are in agreement with the more electropositive character of silicon compared to carbon. Possible dissociation paths of the minimum structures were also calculated.  相似文献   

5.
A silicon-containing fused bicyclic compound with a highly strained bridgehead double bond, 2,3,6,7-tetra-tert-butyl-4-(tert-butyldimethylsilyl)-5-(tert-butyldimethylsiloxy)-5-silabicyclo[3.2.0]hepta-1,3,6-triene (2), was synthesized quantitatively by the reaction of 1,2-bis-tert-butyl-4,4-bis(tert-butyldimethylsilyl)-4-silatriafulvene (3) with di-tert-butylcyclopropenone (4) at 80 degrees C. An X-ray crystallographic analysis for 2 not only confirmed a bicyclic structure having a silacyclopentadiene (silole) ring fused with a silacyclobutene ring but also the remarkable deformation around the double bonds; the sum of the bond angles around the unsaturated bridgehead carbon was 333 degrees . The strain energy of a model 5-silabicyclo[3.2.0]hepta-1,3,6-triene was calculated at the MP2/6-31+G(d,p)//B3LYP/6-31+G(d) level (30.2 kcal/mol) to be comparable to that for parent bicyclo[3.2.0]hepta-1,3,6-triene (30.7 kcal/mol). Despite the high steric strain, 2 was stable enough to be kept intact for several months in the air. The high stability is ascribed to the effective steric protection of the ring system by the bulky substituents.  相似文献   

6.
The potential energy surface (PES) for the HOBr.H(2)O complex has been investigated using second- and fourth-order M?ller-Plesset perturbation theory (MP2, MP4) and coupled cluster theory with single and doubles excitations (CCSD), and a perturbative approximation of triple excitations (CCSD-T), correlated ab initio levels of theory employing basis sets of triple zeta quality with polarization and diffuse functions up to the 6-311++G(3dp,3df ) standard Pople's basis set. Six stationary points being three minima, two first-order transition state (TS) structures and one second-order TS were located on the PES. The global minimum syn and the anti equilibrium structure are virtually degenerated [DeltaE(ele-nuc) approximately 0.3 kcal mol(-1), CCSD-T/6-311++G(3df,3pd) value], with the third minima being approximately 4 kcal mol(-1) away. IRC analysis was performed to confirm the correct connectivity of the two first-order TS structures. The CCSD-T/6-311++G(3df,3pd)//MP2/6-311G(d,p) barrier for the syn<-->anti interconversion is 0.3 kcal mol(-1), indicating that a mixture of the syn and anti forms of the HOBr.H(2)O complex is likely to exist.  相似文献   

7.
The structures and isomerization of Si(2)CN species are explored at density functional theory and ab initio levels. Fourteen minimum isomers are located connected by 23 interconversion transition states. At the coupled-cluster single double (CCSD)(T)/6-311+G(2df)//QCISD/6-311G(d) +zero-point vibrational energies level, the thermodynamically most stable isomer is a four-membered ring form cSiSiCN 1 with Si-C cross bonding. Isomer 1 has very strong C-N multiple bonding characters, formally suggestive of a radical adduct between Si(2) and CN. Such a highly pi-electron localization can effectively stabilize isomer 1 to be the ground state. The second low-lying isomer is a linear form SiCNSi 5 (9.8 kcal/mol above 1) with resonating structure among [Si=C-*N=Si], *[Si=C=N=Si], and [Si=C=N-Si*]* with the former two bearing more weight. The species 1 and 5 have very high kinetic stability stabilized by the barriers of at least 25 kcal/mol. Both isomers should be experimentally or astrophysically observable. In light of the fact that no cyclic nitrogen-containing species have been detected in space, the cyclic species 1 could be a very promising candidate. The calculated results are compared to those of the analogous molecules C(3)N, C(3)P, SiC(2)N, and SiC(2)P. Implications of Si(2)CN in interstellar and N-doped SiC vaporization processes are also discussed.  相似文献   

8.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   

9.
Comparative analysis of the calculated gas-phase activation barriers (DeltaE++) for the epoxidation of ethylene with dimethyldioxirane (DMDO) and peroxyformic acid (PFA) [15.2 and 16.4 kcal/mol at QCISD(T)// QCISD/6-31+G(d,p)] and E-2-butene [14.3 and 13.2 kcal/mol at QCISD(T)/6-31G(d)//B3LYP/6-311+G(3df,2p)] suggests similar oxygen atom donor capacities for both oxidants. Competition experiments in CH(2)Cl(2) solvent reveal that DMDO reacts with cyclohexene much faster than peracetic acid/acetic acid under scrupulously dried conditions. The rate of DMDO epoxidation is catalyzed by acetic acid with a reduction in the classical activation barrier of 8 kcal/mol. In many cases, the observed increase in the rate for DMDO epoxidation in solution may be attributed to well-established solvent and hydrogen-bonding effects. This predicted epoxidative reactivity for DMDO is not consistent with what has generally been presumed for a highly strained cyclic peroxide. The strain energy (SE) of DMDO has been reassessed and its moderated value (about 11 kcal/mol) is now more consistent with its inherent gas-phase reactivity toward alkenes in the epoxidation reaction. The unusual thermodynamic stability of DMDO is largely a consequence of the combined geminal dimethyl- and dioxa-substitution effects and unusually strong C-H and C-CH(3) bonds. Methyl(trifluoromethyl)dioxirane (TFDO) exhibits much lower calculated activation barriers than DMDO in the epoxidation reaction (the average DeltaDeltaE++ values are about 7.5 kcal/mol). The rate increase relative to DMDO of approximately 10(5), while consistent with the higher strain energy for TFDO (SE approximately 19 kcal/mol) is attributed largely to the inductive effect of the CF(3) group. We have also examined the effect of alkene strain on the rate of epoxidation with PFA. The epoxidation barriers are only slightly higher for the strained alkenes cyclopropene (DeltaE++ = 14.5 kcal/mol) and cyclobutene (DeltaE++ = 13.7 kcal/mol) than for cyclopentene (DeltaE++ = 12.1 kcal/mol), reflecting the fact there is little relief of strain in the transition state. Alkenes strained by twist or pi-bond torsion do exhibit much lower activation barriers.  相似文献   

10.
To evaluate the effect of geminal substitution at silicon on 1-sila- and 1,3-disilacyclobutanes' strain energies, their 2+2 cycloreversion enthalpies, and Si=C pi-bond energies in silenes, an ab initio MO study of silenes, R2Si=CH2 (1), 1-silacyclobutanes, cyclo-R2Si(CH2)3 (2), and 1,3-disilacyclobutanes, cyclo-(R2SiCH2)2 (3), was performed using the level of theory denoted MP4/TZ(d)//MP2/6-31G(d) (TZ means the 6-311G(d) basis set for elements of the second period and hydrogen, and the McLean-Chandler (12s,9p)/[6s,5p](d) basis set for the third period elements). In the series R = H, CH3, SiH3, CH3O, NH2, Cl, F, the growth of the reaction enthalpies and strain energies is proportional to the substituents' electronegativities. 2+2 cycloreversion of 2 is endothermic by 40.6-63.1 kcal/mol, whereas that of 3 is endothermic by 72.7-114.2 kcal/mol. On going from a silicon to a fluorine substituent at the sp2-hybridized silicon atom, the pi-bond energy in 1 weakens by 11.3 kcal/mol, and the Si=C bond length shortens by 0.053 A. The effect of substituents' electronegativities at the double-bonded silicon atom in silenes is formulated as follows: the higher electronegativity, the shorter and the weaker the Si=C pi-bond. The latter is rationalized in terms of more strained geometry resulting from the energetic cost for planarizing the R2SiC moiety. The enthalpies of the ring-opening reaction are 68.0-80.1 kcal/mol (a cleavage of the Si-C bond in 3), 65.0-76.4 kcal/mol (a cleavage of the Si-C bond in 2), and 58.0-64.9 kcal/mol (a cleavage of the C-C bond in 2). The pronounced difference in the enthalpies of 2+2 cycloreversion of 1-sila- and 1,3-disilacyclobutanes is mainly due to the difference in the enthalpies of diradicals' decomposition. The decomposition of diradicals resulting from a cleavage of C-C and Si-C bonds in 2 is exothermic by 24.3-3.3 kcal/mol (apart from the difluoro derivative which is endothermic by 5.1 kcal/mol) and 27.0-13.3 kcal/mol, respectively. The decomposition of a 1,4-diradical resulting from ring opening of 3, apart from the disilyl derivative, is the endothermic process for which the enthalpy varies from 10.6 to 40.4 kcal/mol.  相似文献   

11.
The rearrangement of phenylcarbene (1) to 1,2,4,6-cycloheptatetraene (3) has been studied theoretically, using SCF, CASSCF, CASPT2N, DFT (B3LYP), CISD, CCSD, and CCSD(T) methods in conjunction with the 6-31G, 6-311+G, 6-311G(2d,p), cc-pVDZ, and DZd basis sets. Stationary points were characterized by vibrational frequency analyses at CASSCF(8,8)/6-31G and B3LYP/6-31G. Phenylcarbene (1) has a triplet ground state ((3)A") with a singlet-triplet separation (DeltaE(ST)) of 3-5 kcal mol(-)(1). In agreement with experiment, chiral 3 is the lowest lying structure on this part of the C(7)H(6) potential energy surface. Bicyclo[4.1.0]hepta-2,4,6-triene (2) is an intermediate in the rearrangement of 1 into 3, but it is unlikely to be observable experimentally due to a barrier height of only 1-2 kcal mol(-)(1). The enantiomers of 3 interconvert via the (1)A(2) state of cycloheptatrienylidene (4) with an activation energy of 20 kcal mol(-)(1). The "aromatic" (1)A(1) state, previously believed to be the lowest singlet state of 4, is roughly 10 kcal mol(-)(1) higher in energy than the (1)A(2) state, and, in violation of Hund's rule, (3)A(2) is also calculated to lie above (1)A(2) in energy. Thus, even if (3)A(2) were populated, it is likely to undergo rapid intersystem crossing to (1)A(2). We suggest (3)B(1)-4 is the metastable triplet observed by EPR.  相似文献   

12.
The results of a theoretical study of the one-, two- and three-water hydrolyses of carbodiimide and the one- and two-water hydrolyses of methyleneimine are presented. All structures were optimized and characterized at the MP2(full)/6-31G* level of theory. Energies for the one-water hydrolysis of carbodiimide were determined at numerous higher levels of theory, up to the QCISD(T)(fc)/6-311+G(3df,2p)//MP2(full)/6-31G* level. The Delta E0(Delta G298) activation barriers for the rate-determining steps of the one-, two- and three-water hydrolyses of carbodiimide, respectively, are 44.8 (46.3), 29.3 (32.3) and 22.9 (26.2) kcal mol(-1) at the MP2(full)/6-31G* level. The consideration of a second water molecule catalyzes the hydrolysis by 15.5 kcal mol(-1) on the E0 surface and by 14.0 kcal mol(-1) on the G298 surface with respect to the one-water hydrolysis. Placement of a third water molecule opposite the site of proton transfer catalyzes the reaction by an additional 6.4 kcal mol(-1) on the E0 surface and by 6.1 kcal mol(-1) on the G298 surface. The catalytic effect of the third water molecule results from the synergistic effects of rehybridization and charge relaxation in the transition state. The charge relaxation in the transition state is illustrated through natural population analysis calculations on the pre-coordination complexes and the transition state structures. We also consider the placement of the third water molecule in the proton transfer chain and we show this to be of little catalytic relevance. The activation barriers determined for the one- and two-water hydrolyses of methyleneimine are Delta G298=51.9 and Delta G298=35.5 kcal mol(-1), respectively, and they are larger than for carbodiimide. The results are compared with the hydrolyses of carbon dioxide and formaldehyde.  相似文献   

13.
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this conformation is not in itself a major contribution to catalysis. Transition state stabilization (by electrostatic interactions, including hydrogen bonds) is found to be central to catalysis by the enzyme. Several hydrogen bonds are observed to shorten at the TS. The active site is clearly complementary to the transition state for the reaction, stabilizing it more than the substrate, so reducing the barrier to reaction.  相似文献   

14.
Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.  相似文献   

15.
UDFT and CASSCF calculations with the 6-31G(d) basis set were performed to investigate the heavier group 14 element (M) effect on the ground-state spin multiplicity of cyclopentane-1,3-diyls and their reactivity. The calculations find that 2-metallacyclopentane-1,3-diyls (M = Si, Ge) that possess a variety of substituents (X = H, Me, F, OR, SiH(3)) at M(2) are singlet ground-state molecules. The energies of the 1,3-diphenyl-substituted singlet 2-silacyclopentane-1,3-diyls are calculated to be ca. 5 kcal/mol lower than those of the intramolecular ring-closure products, i.e., 1,4-diphenyl-5-silabicyclo[2.1.0]pentanes, at the B3LYP/6-31G(d) level of theory. The energy barrier for the disrotatory ring closure of singlet 2,2-dimethyl-1,3-diphenyl-2-silacyclopentane-1,3-diyl (lambda(calcd) = 757 nm, f = 1.01 at RCIS/6-31G(d)) to the corresponding 5-silabicyclo[2.1.0]pentane is computed to be 11.6 kcal/mol, which is 13.1 kcal/mol lower in energy than that for the conrotatory ring-opening to a 3-silapenta-1,4-diene. The computational work predicts that singlet 1,3-diaryl-2-silacyclopentane-1,3-diyls are persistent molecules under conditions without trapping agents.  相似文献   

16.
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.  相似文献   

17.
A computational modeling of the protonation of corannulene at B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p) and of the binding of lithium cations to corannulene at B3LYP/6-311G(d,p)//B3LYP/6-31G(d,p) has been performed. A proton attaches preferentially to one carbon atom, forming a sigma-complex. The isomer protonated at the innermost (hub) carbon has the best total energy. Protonation at the outermost (rim) carbon and at the intermediate (bridgehead rim) carbon is less favorable by ca. 2 and 14 kcal mol(-)(1), respectively. Hydrogen-bridged isomers are transition states between the sigma-complexes; the corresponding activation energies vary from 10 to 26 kcal mol(-)(1). With an empirical correction obtained from calculations on benzene, naphthalene, and azulene, the best estimate for the proton affinity of corannulene is 203 kcal mol(-)(1). The lithium cation positions itself preferentially over a ring. There is a small energetic preference for the 6-ring over the 5-ring binding (up to 2 kcal mol(-)(1)) and of the convex face over the concave face (3-5 kcal mol(-)(1)). The Li-bridged complexes are transition states between the pi-face complexes. Movement of the Li(+) cation over either face is facile, and the activation energy does not exceed 6 kcal mol(-)(1) on the convex face and 2.2 kcal mol(-)(1) on the concave face. In contrast, the transition of Li(+) around the corannulene edge involves a high activation barrier (24 kcal mol(-)(1) with respect to the lowest energy pi-face complex). An easier concave/convex transformation and vice versa is the bowl-to-bowl inversion with an activation energy of 7-12 kcal mol(-)(1). The computed binding energy of Li(+) to corannulene is 44 kcal mol(-)(1). Calculations of the (7)Li NMR chemical shifts and nuclear independent chemical shifts (NICS) have been performed to analyze the aromaticity of the corannulene rings and its changes upon protonation.  相似文献   

18.
A theoretical study of SiH(4) activation by Cp(2)LnH complexes for the entire series of lanthanides has been carried out at the DFT-B3PW91 level of theory. The reaction paths corresponding to H/H exchange and silylation, formation of Cp(2)Ln(SiH(3)), have been computed. They both occur via a single-step sigma-bond metathesis mechanism. For the athermal H/H exchange reaction, the calculated activation barrier averages 1.8 kcal.mol(-)(1) relative to the precursor adduct Cp(2)LnH(eta(2)-SiH(4)) for all lanthanide elements. The silylation path is slightly exogenic (DeltaE approximately -6.5 kcal.mol(-1)) with an activation barrier averaging 5.2 kcal.mol(-1) relative to the precursor adduct where SiH(4) is bonded by two Si-H bonds. Both pathways are therefore thermally accessible. The H/H exchange path is calculated to be kinetically more favorable whereas the silylation reaction is thermodynamically preferred. The reactivity of this familly of lanthanide complexes with SiH(4) contrasts strongly with that obtained previously with CH(4). The considerably lower activation barrier for silylation relative to methylation is attributed to the ability of Si to become hypervalent.  相似文献   

19.
Vertical electronic transition energies of diaminosilylenes and their dimers (disilenes and nitrogen‐bridged) were investigated by ab initio and density functional calculations. A good linear correlation was found between the observed UV transition energies of various silylenes and disilenes and those of model compounds calculated using the CIS and TD–DFT methods. On the basis of these computations the experimental UV absorption maximum observed for the dimer of (i‐Pr2N)2Si: (λmax 439 nm at 77 K), could be assigned to an Si? Si bonded dimer with an unusually long Si? Si distance of 2.472 Å, and the isomeric amino‐bridged cyclic dimer could be discarded. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1536–1541, 2001  相似文献   

20.
The geometric structure and conformational properties of the saturated five-membered-ring compound 2,2-di-tert-butyl-1,3-diaza-2-silacyclopentane, (t-Bu)(2)Si(NH)(2)(CH(2))(2), was investigated by gas electron diffraction and quantum chemical methods (B3LYP and MP2 with 6-31G basis sets). The compound exists as a mixture of two conformers, both possessing a twist conformation and C(2) symmetry. In the prevailing form (76(6) % at 305 K) the N-H bonds stagger the adjacent CH(2) groups, and in the minor form the N-H bonds eclipse the CH(2) groups. This conformational mixture corresponds to a free energy difference of DeltaG degrees = 0.69(19) kcal/mol. The B3LYP method predicts a preference for the eclipsed conformer. The largest torsion occurs around the C-C bond with tau(NCCN) = 29.2(24) degrees. The degree of puckering in the title compound is considerably smaller than that in silacyclopentane with tau(CCCC) = 49.7(14) degrees. This has been rationalized by larger angle strain in the title compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号