首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Criteria are given to determine the oscillatory property of solutions of the nonlinear difference equation: Δdun + ∑i = 1mpinfi(un, Δun,…,Δd ? 1un) = 0, n = 0, 1, 2,…, where d is an arbitrary integer, generalizing results that have been obtained by B. Szmanda (J. Math. Anal. Appl.79 (1981), 90–95) for d = 2. Analogous results are given for the differential equation: u(d) + ∑i = 1mpi(t)fi(u, u′,…, u(d ? 1)) = 0, t ? t0, which coincide with the criteria given by 2., 3., 599–602) and 4., 5., 6., 715–719) for the case m = 1.  相似文献   

2.
We investigate qualitative properties of local solutions u(t,x)?0 to the fast diffusion equation, tu=Δ(um)/m with m<1, corresponding to general nonnegative initial data. Our main results are quantitative positivity and boundedness estimates for locally defined solutions in domains of the form [0,TΩ, with ΩRd. They combine into forms of new Harnack inequalities that are typical of fast diffusion equations. Such results are new for low m in the so-called very fast diffusion range, precisely for all m?mc=(d−2)/d. The boundedness statements are true even for m?0, while the positivity ones cannot be true in that range.  相似文献   

3.
Sufficient conditions on the existence of mild solutions for the following semilinear nonlocal evolution inclusion with upper semicontinuous nonlinearity: u(t)∈A(t)u(t)+F(t,u(t)), 0<t?d, u(0)=g(u), are given when g is completely continuous and Lipschitz continuous in general Banach spaces, respectively. An example concerning the partial differential equation is also presented.  相似文献   

4.
The existence of a unique strong solution of the nonlinear abstract functional differential equation u′(t) + A(t)u(t) = F(t,ut), u0 = φεC1(¦?r,0¦,X),tε¦0, T¦, (E) is established. X is a Banach space with uniformly convex dual space and, for t? ¦0, T¦, A(t) is m-accretive and satisfies a time dependence condition suitable for applications to partial differential equations. The function F satisfies a Lipschitz condition. The novelty of the paper is that the solution u(t) of (E) is shown to be the uniform limit (as n → ∞) of the sequence un(t), where the functions un(t) are continuously differentiate solutions of approximating equations involving the Yosida approximants. Thus, a straightforward approximation scheme is now available for such equations, in parallel with the approach involving the use of nonlinear evolution operator theory.  相似文献   

5.
We present here a method which allows to derive a nontrivial lower bounds for the least common multiple of some finite sequences of integers. We obtain efficient lower bounds (which in a way are optimal) for the arithmetic progressions and lower bounds less efficient (but nontrivial) for quadratic sequences whose general term has the form un=an(n+t)+b with (a,t,b)∈Z3, a?5, t?0, gcd(a,b)=1. From this, we deduce for instance the lower bound: lcm{12+1,22+1,…,n2+1}?0,32n(1,442) (for all n?1). In the last part of this article, we study the integer lcm(n,n+1,…,n+k) (kN, nN). We show that it has a divisor dn,k simple in its dependence on n and k, and a multiple mn,k also simple in its dependence on n. In addition, we prove that both equalities: lcm(n,n+1,…,n+k)=dn,k and lcm(n,n+1,…,n+k)=mn,k hold for an infinitely many pairs (n,k).  相似文献   

6.
We present an elementary theory of optimal interleaving schemes for correcting cluster errors in two-dimensional digital data. It is assumed that each data page contains a fixed number of, say n, codewords with each codeword consisting of m code symbols and capable of correcting a single random error (or erasure). The goal is to interleave the codewords in the m×n array such that different symbols from each codeword are separated as much as possible, and consequently, an arbitrary error burst with size up to t can be corrected for the largest possible value of t. We show that, for any given m, n, the maximum possible interleaving distance, or equivalently, the largest size of correctable error bursts in an m×n array, is given by if n?⌈m2/2⌉, and t=m+⌊(n-⌈m2/2⌉)/m⌋ if n?⌈m2/2⌉. Furthermore, we develop a simple cyclic shifting algorithm that can provide a systematic construction of an m×n optimal interleaving array for arbitrary m and n. This extends important earlier work on the complementary problem of constructing interleaving arrays that, given the burst size t, minimize the interleaving degree, that is, the number of different codewords in a 2-D (or 3-D) array such that any error burst with given size t can be corrected. Our interleaving scheme thus provides the maximum burst error correcting power without requiring prior knowledge of the size or shape of an error burst.  相似文献   

7.
An asymptotic theory was given by Phillips and Magdalinos (J Econom 136(1):115–130, 2007) for autoregressive time series Y t ?=?ρY t?1?+?u t , t?=?1,...,n, with ρ?=?ρ n ?=?1?+?c/k n , under (2?+?δ)-order moment condition for the innovations u t , where δ?>?0 when c?<?0 and δ?=?0 when c?>?0, {u t } is a sequence of independent and identically distributed random variables, and (k n ) n?∈?? is a deterministic sequence increasing to infinity at a rate slower than n. In the present paper, we established similar results when the truncated second moment of the innovations $l(x)=\textsf{E} [u_1^2I\{|u_1|\le x\}]$ is a slowly varying function at ∞, which may tend to infinity as x?→?∞. More interestingly, we proposed a new pivotal for the coefficient ρ in case c?<?0, and formally proved that it has an asymptotically standard normal distribution and is nuisance parameter free. Our numerical simulation results show that the distribution of this pivotal approximates the standard normal distribution well under normal innovations.  相似文献   

8.
Sufficient conditions are developed for the null-controllability of the nonlinear delay process (1) x?(t) = L(t, xt) + B(t) u(t) + f(t, xt, u(t)) when the values of the control functions u lie in an m-dimensional unit cube Cm of Em. Conditions are placed on f which guarantee that if the uncontrolled system x?(t) = L(t, xt) is uniformly asymptotically stable and if the linear control system x(t) = L(t, xt) + B(t) u(t) is proper, then (1) is null-controllable.  相似文献   

9.
In this article we evaluate the Fourier transforms of retarded Lorentz-invariant functions (and distributions) as limits of Laplace transforms. Our method works generally for any retarded Lorentz-invariant functions φ(t) (t?Rn) which is, besides, a continuous function of slow growth. We give, among others, the Fourier transform of GR(t, α, m2, n) and GA(t, α, m2, n), which, in the particular case α = 1, are the characteristic functions of the volume bounded by the forward and the backward sheets of the hyperboloid u = m2 and by putting α = ?k are the derivatives of k-order of the retarded and the advanced-delta on the hyperboloid u = m2. We also obtain the Fourier transform of the function W(t, α, m2, n) introduced by M. Riesz (Comm. Sem. Mat. Univ. Lund4 (1939)). We finish by evaluating the Fourier transforms of the distributional functions GR(t, α, m2, n), GA(t, α, m2, n) and W(t, α, m2, n) in their singular points.  相似文献   

10.
The paper presents a simple procedure for the construction of quasi-interpolation operators in spaces of m-harmonic splines in Rd, which reproduce polynomials of high degree. The procedure starts from a generator ?0, which is easy to derive but with corresponding quasi-interpolation operator reproducing only linear polynomials, and recursively defines generators ?1,?2,…,?m−1 with corresponding quasi-interpolation operators reproducing polynomials of degree up to 3,5,…,2m−1 respectively. The construction of ?j from ?j−1 is explicit, simple and independent of m. The special case d=1 and the special cases d=2,m=2,3,4 are discussed in details.  相似文献   

11.
For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write ${\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}}For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write \frach(t)(1 - t)d + 1=?m 3 0 g(m)  tm{\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}} , for some polynomial g(m) with rational coefficients, then \fracUnh(t)(1- t)d+1 = ?m 3 0g(nm)  tm{\frac{{\rm{U}}_{n}h(t)}{(1- t)^{d+1}} = \sum_{m \geq 0}g(nm) \, t^{m}} . We show that there exists a positive integer n d , depending only on d, such that if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and h(0) = 1, then for nn d , U n h(t) has simple, real, negative roots and positive, strictly log concave and strictly unimodal coefficients. Applications are given to Ehrhart δ-polynomials and unimodular triangulations of dilations of lattice polytopes, as well as Hilbert series of Veronese subrings of Cohen–Macauley graded rings.  相似文献   

12.
In the present paper, we study the Cauchy problem in a Banach spaceE for an abstract nonlinear differential equation of form $$\frac{{d^2 u}}{{dt^2 }} = - A\frac{{du}}{{dt}} + B(t)u + f(t,W)$$ whereW = (A 1(t)u,A 2(t)u,?,A ?(t)u), (A i (t),i = 1, 2, ?,?), (B(t),tI = [0,b]) are families of closed operators defined on dense sets inE intoE, f is a given abstract nonlinear function onI ×E ? intoE and ?A is a closed linear operator defined on dense set inE intoE, which generates a semi-group. Further, the existence and uniqueness of the solution of the considered Cauchy problem is studied for a wide class of the families (A i(t),i = 1, 2, ?,?), (B(t),tI). An application and some properties are also given for the theory of partial diferential equations.  相似文献   

13.
The genuinely nonlinear dispersive K(m,n) equation, ut+(um)x+(un)xxx=0, which exhibits compactons: solitons with compact support, is investigated. New solitary-wave solutions with compact support are developed. The specific cases, K(2,2) and K(3,3), are used to illustrate the pertinent features of the proposed scheme. An entirely new general formula for the solution of the K(m,n) equation is established, and the existing general formula is modified as well.  相似文献   

14.
We investigate the existence of nonnegative weak solutions to the problem ut=Δ(um)−p|∇u| in Rn×(0,∞) with +(1−2/n)<m<1. It will be proved that: (i) When 1<p<2, if the initial datum u0D(Rn) then there exists a solution; (ii) When 1<p<(2+mn)/(n+1), if the initial datum u0(x) is a bounded and nonnegative measure then the solution exists; (iii) When (2+mn)/(n+1)?p<2, if the initial datum is a Dirac mass then the solution does not exist. We also study the large time behavior of the L1-norm of solutions for 1<p?(2+mn)/(n+1), and the large time behavior of t1/βu(⋅,t)−Ec(⋅,t)L for (2+mn)/(n+1)<p<2.  相似文献   

15.
If one looks for an optimal (by criterion of minimal variance) linear estimate of s′(t) from the observation of u(t) = s(t) + n(t), where n(t) is noise and s(t) is useful signal, then one can derive an integral equation for the weight function of optimal estimate. This integral equation is often difficult to solve and, even if one can solve it, it is difficult to construct the corresponding filter. In this paper an optimal estimate of s′ on a subset of all linear estimates in sought and it is shown that this quasioptimal estimate is easy to calculate, the corresponding filter is easy to construct, and the error of this estimate differs little from the error of optimal estimates. It is also shown that among all estimates (linear and nonlinear) of s′ for ∥n∥ ? δ and ∥s″∥ ? M the best estimate is given by Δhu = (2h)?1 [u(t + h) ? u(t ? h)] with h = (M)12.  相似文献   

16.
We study the existence of positive solutions of the m-polyharmonic nonlinear elliptic equation m(−Δ)u+f(⋅,u)=0 in the half-space , n?2 and m?1. Our purpose is to give two existence results for the above equation subject to some boundary conditions, where the nonlinear term f(x,t) satisfies some appropriate conditions related to a certain Kato class of functions .  相似文献   

17.
Functions which map n-bits to m-bits are important cryptographic sub-primitives in the design of additive stream ciphers. We construct highly nonlinear t-resilient such functions ((n, m, t) functions) by using a class of binary disjoint codes, a construction which was introduced in IEEE Trans. Inform. Theory, Vol. IT-49 (2) (2003). Our main contribution concerns the generation of suitable sets of such disjoint codes. We propose a deterministic method for finding disjoint codes of length ν m by considering the points of PG ). We then obtain some lower bounds on the number of disjoint codes, by fixing some parameters. Through these sets, we deduce in certain cases the existence of resilient functions with very high nonlinearity values. We show how, thanks to our method, the degree and the differential properties of (n, m, t) functions can be improved.Communicated by: J.D. Key  相似文献   

18.
Differential-difference equations of the form u? n = F n (t, un?1, u n , un+1, u?n?1, u? n , u?n+1) are classified according to their intrinsic Lie point symmetries, equivalence group and some low-dimensional Lie algebras including the Abelian symmetry algebras, nilpotent nonAbelian symmetry algebras, solvable symmetry algebras with nonAbelian nilradicals, solvable symmetry algebras with Abelian nilradicals and nonsolvable symmetry algebras. Here F n is a nonlinear function of its arguments and the dot over u denotes differentiation with respect to t.  相似文献   

19.
A graph is denoted by G with the vertex set V(G) and the edge set E(G). A path P = 〈v0v1, … , vm〉 is a sequence of adjacent vertices. Two paths with equal length P1 = 〈 u1u2, … , um〉 and P2 = 〈 v1v2, … , vm〉 from a to b are independent if u1 = v1 = a, um = vm = b, and ui ≠ vi for 2 ? i ? m − 1. Paths with equal length from a to b are mutually independent if they are pairwisely independent. Let u and v be two distinct vertices of a bipartite graph G, and let l be a positive integer length, dG(uv) ? l ? ∣V(G) − 1∣ with (l − dG(uv)) being even. We say that the pair of vertices u, v is (ml)-mutually independent bipanconnected if there exist m mutually independent paths with length l from u to v. In this paper, we explore yet another strong property of the hypercubes. We prove that every pair of vertices u and v in the n-dimensional hypercube, with dQn(u,v)?n-1, is (n − 1, l)-mutually independent bipanconnected for every with (l-dQn(u,v)) being even. As for dQn(u,v)?n-2, it is also (n − 1, l)-mutually independent bipanconnected if l?dQn(u,v)+2, and is only (ll)-mutually independent bipanconnected if l=dQn(u,v).  相似文献   

20.
Two timing, an ad hoc method for studying periodic evolution equations, can be given a rigorous justification when the problem is in standard form, u = ?f(t, u). First solve dw = ?(I ? M) f(σ, w) for w(σ, v), where M is the mean value operator and v is any initial value. Then w(σ, v) is periodic in σ but does not satisfy the original equation. Now, force a solution u(t), using nonlinear variation of constants, in the form w(σ, v(τ)), where σ = t is the fast time and τ = ?t is the slow time. With the resulting differential equation for v, one reads off from its nonconstant solutions thè approximate transient behavior of u(t) for times of order ??1. On the other hand, the equilibrium points (constant solutions) v0 correspond to steady state (periodic solutions) of the original system. Interesting applications, such as to one-dimensional wave equations with cubic damping, can be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号