首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mo-doped SnO2 (MTO) nanowires are synthesized by an in-situ doping chemical vapour deposition method. Raman scattering spectra indicate that the lattice symmetry of MTO nanowires lowers with the increase of Mo doping, which implies that Mo ions do enter into the lattice of SnO2 nanowire. Ultraviolet-visible diffuse reflectance spectra show that the band gap of MTO nanowires decreases with the increase of Mo concentration. The photoluminescence emission of SnO2 nanowires around 580 nm at room temperature can also be controlled accurately by Mo-doping, and it is extremely sensitive to Mo ions and will disappear when the atomic ratio reaches 0.46%.  相似文献   

2.
Single-crystalline SnO2 nanowires with sizes of 4-14 nm in diameter and 100-500 nm in length were produced in a molten salt approach by using hydrothermal synthesized precursor. Structural characters of the nanowires were examined by X-ray diffraction and high-resolution electron transmission microscopy. Raman, photoluminescence and X-ray photoelectron spectra of the samples were examined under heat treatments. Three new Raman modes at 691, 514 and 358 cm−1 were recorded and assigned. The former two are attributed to activation of original Raman-forbidden A2uLO mode and the third is attributed to defects in small-sized nanowires. A strong photoluminescence is observed at about 600 nm, the temperature effects is examined and the origin of the PL process is discussed via X-ray photoelectron spectra.  相似文献   

3.
利用简单的化学气相沉积法,以Sn粉为源材料合成不同形貌的一维SnO2纳米棒、纳米线和纳米花等纳米结构,并通过减小载气中的氧含量获得新颖的SnO2亚微米环状结构.通过调节Sn粉的量和载气中的氧含量、升温速率等试验条件,有效实现SnO2一维纳米结构的控制生长.采用扫描电子显微镜、能谱仪和X射线衍射仪表征产物形貌、成分和物相结构,并探讨了SnO2微纳米材料的生长机理. 关键词: 2')" href="#">SnO2 纳米结构 亚微米环 生长机理  相似文献   

4.
马立安  郑永安  魏朝晖  胡利勤  郭太良 《物理学报》2015,64(23):237901-237901
采用化学气相沉积法系统研究了合成温度和N2/O2流量对生长在碳纤维衬底上的SnO2纳米线形貌及场发射性能的影响规律. 利用扫描电镜(SEM)、透射电镜(TEM), X射线衍射(XRD)及能谱仪(EDS)对产物细致表征, 结果表明, SnO2纳米线长径比随反应温度的升高而增大; 随N2/O2流量比值的增大先增大后变小, 场发射测试表明, 合成温度780 ℃, N2/O2流量比为300 : 3 时SnO2纳米线阵列具有最佳的场发射性能, 开启电场为1.03 V/μm, 场强增加到1.68 V/μm时, 发射电流密度达0.66 mA/cm2, 亮度约2300 cd/m2.  相似文献   

5.
用射频磁控溅射法在蓝宝石(0001)衬底上制备出锑掺杂的氧化锡(SnO2:Sb)薄膜.对制备薄膜的结构和发光性质进行了研究.制备样品为多晶薄膜,具有纯SnO2的四方金红石结构.室温条件下对样品进行光致发光测量,在334 nm附近观测到紫外发射峰,并对SnO2:Sb的光致发光机制进行了研究.  相似文献   

6.
We report in this work synthesis of TiO2 nanowires from a TiN thin film overlayed with nickel. The nanowires have been analyzed with EELS, XPS, XRD and HRTEM. It has been shown that the nanowires are single-crystalline and of the rutile structure. The growth mechanism has been studied, allowing to determine in which process conditions synthesis of nanowires occurs and to propose a growth scenario.  相似文献   

7.
Two sets of thin film sputtered In2O3+SnO2 samples, one prepared in argon atmosphere with oxigen, and the other without, at various temperatures between 100°C and 250°C, have been studied by measuring their Farday rotation from optical to infrared frequencies, as well as their optical transmission spectra. The effect of the different treatments on the carrier densities and mobilities, show values that grow with deposition temperature. This can be attributed to an increase in the number of oxygen vacancies. On the other hand, the presence of O2 in the atmosphere during deposition, leads to smaller values at the same temperatures, compared to those obtained in samples prepared in atmosphere without oxygen, seemingly as a result of the filling of the vacancies.  相似文献   

8.
Large-scale synthesis of rutile SnO2 nanorods   总被引:1,自引:0,他引:1  
A high yield of tin oxide (SnO2) nanorods was obtained via annealing a nanoscale precursor in the molten salt flux and surfactant. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction and infrared spectroscopy showed that the nanorods are composed of SnO2 with rutile structure. The surfactant and temperature have a profound influence on the production of SnO2 nanorods.  相似文献   

9.
Pure and Au-doped mesostructured SnO2 thin films were successfully prepared by using non-ionic surfactant Brij-58 (polyoxyethylene acyl ether) as organic template and tin tetrachloride and hydrogen tetrachloroaurate(III) trihydrate as inorganic precursor. Thin films were deposited onto the glass substrates at 450 °C by simple spray pyrolysis technique. The novel mesostructured tin oxide thin films with different Au concentration exhibit highly selective response towards CO. The correlation of the Au incorporation in the mesostructure with particular morphology and gas sensing behavior is discussed using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET surface area and transmission electron microscopy (TEM) studies.  相似文献   

10.
In this paper, effects of Fe doping on crystallinity, microstructure and photoluminescence (PL) properties of sol-gel derived SnO2 thin films are reported. It is shown that doping of Fe3+ ions leads to crystallite size reduction and higher strain in SnO2 thin films. The room temperature PL spectra show marked changes in intensity and blue-shift of the emission lines upon Fe doping. These observations have been correlated with structural changes and defect chemistry of Fe doped SnO2 thin films.  相似文献   

11.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

12.
The photoluminescence of SnO2, a semiconductor with direct, dipole-forbidden gap, is investigated as a function of the lattice temperature and the excitation intensity. The new emission lines observed could be partly interpreted as donor-acceptor-pair recombination and as band-acceptor transition.  相似文献   

13.
Pulsed laser deposited ZnS bare and SnO2 coated ultra thin films were subjected to prolonged electron beam bombardment with 2 keV energy and a steady 44 mA/cm2 current density, in 1 × 10−6 Torr O2 pressure backfilled from a base pressure of 3 × 10−9 Torr at room temperature. Auger electron spectroscopy (AES) was used to monitor changes of the surface chemical composition of both the bare and coated phosphor films during electron bombardment. Degradation was manifested by the decrease of sulphur and accumulation of oxygen on the surface of the bare phosphor. However, with the SnO2 coating this phenomenon was delayed until the protective SnO2 was depleted on the surface through dissociation and reduction.  相似文献   

14.
Stannic oxide (SnO2) nanowires have been prepared by Chemical vapor deposition (CVD). The low-temperature transport properties of a single SnO2 nanowire have been studied. It is found that the transport of the electrons in the nanowires is dominated by the Efros-Shklovskii variable-range hopping (ES-VRH) process due to the enhanced Coulomb interaction in this semiconducting nanowire. The temperature dependence of the resistance follows the relation lnRT−1/2. On the I-V and dI/dV curves of the nanowire a Coulomb gap-like structure at low temperatures appears.  相似文献   

15.
SnO2 nanowires with controlled diameters were grown by chemical vapor deposition process for which four different diameters ranging from 50 to 140 nm were grown by the controlling thickness of gold-thin-films as catalysts. The influence of the diameter-to-thickness ratio as well as the mechanism of its formation was studied. The relationship between photoluminescence intensities and aspect ratio with considering surface effects of SnO2 nanowires was also investigated. The room temperature luminescence intensity was diminished with decreasing the diameter of nanowires due to the increasing surface/volume ratio. The transition energy and emission intensity show abnormal behavior as temperature decreased from room temperature to 5 K.  相似文献   

16.
The effect of hydrogen (H2) gas exposure on the field emission properties of tin oxide (SnO2) nanowires films synthesized by the carbon thermal reduction vapor transport method was investigated. The exposure of H2 gas results in the reduction of the turn-on voltage for driving a current of 10 nA from 7.6 V/μm to 5.5 V/μm and the increase of the field current based on 10 V/μm from 0.47 μA to 2.1 μA. The Fowler–Nordheim plot obtained from the current–voltage data supports that the field emission enhancement of SNW film is attributed to the reduction of the work function by the H2 exposure.  相似文献   

17.
SnO2 thin film was grown on Si substrate using the low pressure chemical vapor deposition (LPCVD) method. The SnO2 thin film was grown in the direction of (110) as deposition time increased. The atomic ratio of O decreased by 62.4, 57.6, and 45.6%, and the thickness of the thin film increased to 0.2, 0.3, and 0.7 ? as the deposition time increased to 10, 20, and 30 min, respectively. The interface of the thin film was examined using high-resolution transmission electron microscope (HRTEM) and energy dispersive spectroscopy (EDS) analysis. The SiO2 layer was observed at between the SnO2 thin film and the Si substrate. This layer decreased in thickness as the deposition time increased, which indicates that the deposition time affected the interface of the thin film.  相似文献   

18.
The morphology and structure of Pt deposited on a WSe2(0 0 0 1) van der Waals surface have been investigated by reflection high energy electron diffraction and scanning tunneling microscopy. At room temperature, the initial growth is characterized by the formation of three-dimensional fcc Pt islands with (1 1 1) orientation. In contrast, at higher temperatures of about 450 °C the formation of a novel chemically ordered Pt-Se alloy is observed. Based on the diffraction patterns, a tetragonal DO22-type structure of a Pt3Se compound is suggested. With increasing Pt thickness, this chemically ordered alloy disappears and an additional superstructure occurs, which is accompanied by the coalescence of the islands. The observed superstructure is attributed to a strong Se diffusion towards the growth surface, forming most likely a PtSe2 alloy with the CdI2-type layered structure on the top surface. Due to the lateral lattice mismatch between the Pt(1 1 1) layers and the PtSe2(1 1 1) top layer, a Moiré pattern with a period of 1.1 nm is created, which might be used as a long-range atomic pattern for further nanostructure growth.  相似文献   

19.
Bi3TiNbO9:Er3+:Yb3+ (BTNEY) thin films were fabricated on fused silica by pulsed laser deposition. It was demonstrated that different laser fluence and substrate temperature during growth of BTNEY upconversion photoluminescence (UC-PL) samples control the film’s grain size and hence influences the UC-PL properties. The average grain size of BTNEY thin films deposited on fused silica substrates with laser fluence 4, 5, 6, and 7 J/cm2 are 30.8, 35.9, 40.6, and 43.4 nm, respectively. The 525 nm emission intensities increase with the deposition laser fluence and the emission intensities of BTNEY thin film deposited under 700 and 600 °C are almost 24 and 4 times, respectively, as strong as those of samples under 500 °C. The grain size of BTNEY thin film increases with the increasing temperature. UC-PL of BTNEY films is enhanced by increasing grain size of the films.  相似文献   

20.
ZnO thin film growth prefers different orientations on the etched and unetched SrTiO 3(STO)(110) substrates.Inclined ZnO and cobalt-doped ZnO(ZnCoO) thin films are grown on unetched STO(110) substrates using oxygen plasma assisted molecular beam epitaxy,with the c-axis 42 inclined from the normal STO(110) surface.The growth geometries are ZnCoO[100]//STO[110] and ZnCoO[111]//STO[001].The low temperature photoluminescence spectra of the inclined ZnO and ZnCoO films are dominated by D 0 X emissions associated with A 0 X emissions,and the characteristic emissions for the 2 E(2G)→ 4A2(4F) transition of Co 2+ dopants and the relevant phonon-participated emissions are observed in the ZnCoO film,indicating the incorporation of Co 2+ ions at the lattice positions of the Zn 2+ ions.The c-axis inclined ZnCoO film shows ferromagnetic properties at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号