共查询到20条相似文献,搜索用时 15 毫秒
1.
采用原位聚合法合成聚苯胺(PAIN)及聚苯胺/炭气凝胶(PAIN/CA)复合材料,经过高温裂解制备含氮碳(NC)及含氮碳/炭气凝胶复合材料(NC/CA),再以KOH为活化剂对其进行活化,制备活化含氮碳(ANC)及活化含氮碳/炭气凝胶复合材料(ANC/CA)。采用扫描电镜、循环伏安、恒流充放电以及电化学阻抗等方法进行性能测试,结果表明,由于KOH的活化作用,含氮碳材料的粒径明显变小,其比电容值为138 F/g,高于未活化含氮碳材料(98 F/g),ANC/AC3复合材料电极的比电容值比ACA电极(88 F/g)高,达到127 F/g。 相似文献
2.
利用天然生物质杨絮特殊的管状结构通过简单的高温碳化法制备出碳微米管(CMTs). 将所得到的碳微米管作为基底, 采用化学气相沉积法制备出三维结构的碳微米管/碳纳米管(CNTs)复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)光谱仪、拉曼光谱仪对其进行了详细分析. 通过两电极测试体系对其超级电容性能进行测试, 碳微米管/碳纳米管复合电极在1 mol·L-1Li2SO4电解液中的比电容值可达77 F·g-1, 远大于碳微米管的比电容值(23 F·g-1). 相似文献
3.
具有高比表面积、良好导电性的多孔碳材料在超级电容器中有着广泛的应用前景. 大量的研究工作致力于通过物理或者化学手段合成并调控多孔材料的微观结构. 在众多多孔碳材料的制备方式中,氢氧化钾作为一种高效的活化剂,常用于制备具有良好孔径分布和高比表面积多孔碳电极材料. 本文主要结合作者课题组的研究工作,着重概述利用氢氧化钾活化sp2碳纳米材料制备多孔碳材料的机理过程、结构形貌的转变以及所得材料的电化学性能,希望对发展新型的高性能基多孔碳材料的超级电容器电极材料有所帮助. 相似文献
4.
5.
6.
7.
Xue-Qin LI Lin CHANG Shen-Long ZHAO Chang-Long HAO Chen-Guang LU Yi-Hua ZHU Zhi-Yong TANG 《物理化学学报》2017,33(1):130-148
超级电容器作为一种新型的能源存储装置,因为其比容量大、充放电速度快、循环寿命长等优点,在储能领域引起了极为广泛的关注。电极材料是决定超级电容器性能的核心因素,其中,常用的超级电容器电极材料主要有如下三类:碳基材料、金属氧化物及氢氧化物材料和导电聚合物材料。本文综述了超级电容器的工作原理并详细介绍了基于碳材料及其二元、三元复合体系的电极材料的研究进展。 相似文献
8.
以工业制糖的副产物糖蜜为新型碳源,替代传统多孔碳生产原料,制备出性能优异的多孔碳球超级电容器电极材料;探索了制备方法,优化了反应条件.利用全功能表面吸附仪、扫描电子显微镜及电化学方法对材料的结构、形貌和电化学性能进行了表征.结果表明,制得的多孔碳球比表面积高达2547 m~2/g,且展现出优异的双电层电容性(170.5 F/g).本研究可解决制糖企业对糖蜜无法大规模利用的问题,并为多孔碳的制备寻求新方法. 相似文献
9.
碳薄膜电极材料在电分析化学中的应用 总被引:1,自引:0,他引:1
由于具有一系列的优点,碳材料被广泛地应用于电分析化学。新型碳电极材料的开发及其性质研究对电分析化学的发展起着重要的推动作用。最近文献报道了一些制备新型碳薄膜电极材料的方法,因为制备方法不同,这些碳薄膜材料的电化学性质如电位窗、稳定性、导电性也显著不同。人们对电位窗宽、背景电流低、稳定性高、表面不易被电极产物钝化的碳薄膜电极材料的研究非常活跃。本文综述了采用不同方法制备的一些碳薄膜电极材料如硼掺杂的金刚石薄膜、无定形碳和纳米晶体碳薄膜材料等在电分析化学中应用。 相似文献
10.
11.
电化学电容器电极材料超细MnO2的制备及表征 总被引:10,自引:0,他引:10
高性能的电化学电容器具有极其重要和广阔的应用前景(1)。以RuO2等贵重金属氧化物为电极材料的电化学电容器已应用于多个领域(2),但昂贵的价格限制了它们更加广泛的应用。有些廉价金属氧化物也具有一定的氧化还原准电容,如Co3O4、NiO和MnO2等(1,3 6)。二氧化锰价格低廉,资源丰富,电化学性能好,其作为电化学电容器的活性材料具有更大的应用前景和价值。本文采用K2S2O8氧化MnSO4·H2O制得超细MnO2,并通过XRD、TEM和SEM测试对其进行表征,并研究了其在0 5mol/LNa2SO4水溶液中的循环伏安性能、恒流充放性能以及电容稳定性能。1… 相似文献
12.
超级电容器寿命长,安全性高,并可以实现快速充放电,是化学电源研究的热点之一。然而,超级电容器的能量密度较低限制了其更多的应用。因此,超级电容器领域的研究关注点在如何提高超级电容器的能量密度。其中,提高比容量是提高能量密度的一种有效途径。本文通过对电极材料和电解液的优化来研究制备得到高容量超级电容器的方法。电极材料的比表面积、孔道结构和导电性对其电化学性能有着直接的影响。一方面,通过优化电极材料的孔道结构和比表面积可以增加活性位点并提高电解液离子传导率,从而得到高比电容。另一方面,电极材料导电性的提高有利于提升其电子传导率从而得到较高的比容量。本文分别对碳材料和金属氧化物/氢氧化物的优化达到了增加双电层电容和赝电容的目的。不仅如此,还可以通过在电解液中增加氧化还原电对从而得到高比电容。这一方法为高容量超级电容器的制备提供了新的思路。 相似文献
13.
超细氧化钌超电容器电极材料的制备 总被引:4,自引:0,他引:4
本文采用利用氯化钌和碳酸氢氨为反应前驱体,溶胶凝胶方法制备了超细氧化钌材料。将材料在250℃下加热脱水处理后,材料具有良好的表面特性和最大电化学比容量570F·g-1。当脱水温度在300℃以上时,氧化钌材料明显晶化,同时材料比容量迅速降低。本文还测试了不同温度处理后材料的等效串联电阻和法拉第电化学阻抗特性,实验证明250℃条件下处理的电极材料具有最低的等效串联阻抗和良好的功率特性。当制备氧化钌过程中掺加适量碳纳米管形成复合材料时,电极材料的功率特性得到明显的改善。 相似文献
14.
用铅笔芯制作了不同直径的碳柱热电极,表征了碳柱热电极的电化学和温敏等各种性质。结果表明,碳柱热电极在多次加热过程中均表现出对温度变化的快速响应以及良好的热稳定性。将其应用于痕量铅的方波阳极溶出伏安法测定,65℃时灵敏度比常温高,Pb2+浓度在1~22μg/L呈线性关系,线性回归系数r=0.995 5,检测限0.5μg/L。 相似文献
15.
自支撑电极材料在超级电容器中有着广泛的应用. 碳材料具有结构多样、来源丰富、价格低廉以及性能稳定等优点,是构建三维自支撑电极材料的首选基底材料. 本文结合作者课题组的研究工作,从“由上而下”和“由下而上”两个方面,概述了设计、制备三维自支撑电极材料的常用方法及材料的电容性能,希望对开发利用天然可再生资源,制备高性能的自支撑电极材料及其在超级电容器材料中的应用有所帮助. 相似文献
16.
17.
采用简易浸泡法和一步碳化/活化法制备香菇生物质基氮掺杂微孔碳材料(NMCs),利用扫描电子显微镜(SEM)、透射电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对材料的结构形貌进行表征,并研究了其超级电容特性。测试结果表明,NMCs的微孔比表面积高达1 594 m~2·g~(-1),且拥有更高数量的含氮官能团,其吡啶型含氮官能团比例也有所提高,展现出优异的超级电容特性。在0.5 A·g~(-1)的电流密度下,其比容量高达325 F·g~(-1),当电流密度上升到20 A·g~(-1)时,其比电容仍然高达180 F·g~(-1),表现出优异的倍率性能;同时,在5 A·g~(-1)的电流密度下,电极经历5 000次充放电循环后具有97.7%的比容量保持率,展现出优异的循环稳定性。这主要归因于NMCs超高的微孔比表面积和丰富的含氮官能团。 相似文献
18.
19.
以三聚氰胺和甲醛作为碳源和氮源,合成三聚氰胺甲醛树脂前驱体(2);采用模板法,以CaCl_2为模板剂,2经高温碳化处理制备孔结构发达的含氮中孔碳材料(NMC),其结构经N_2吸附/脱附、扫描电镜(SEM),X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征。不同炭化温度(700℃,800℃,900℃)下所合成的NMC表面氮含量为3.85~10.80at%,比表面积为570~870m~2·g~(-1),中孔孔径为4nm和10nm。以H_2O_2分解反应作为探针反应,考察了NMC的催化活性。结果表明:NMC的催化活性随着碳化温度的升高而增大,碳化温度为900℃的NMC分解H_2O_2的升温速率为6.92℃·min~(-1),循环套用5次后,活性基本维持不变。 相似文献
20.
二氧化锰微米球制备及其于超级电容器的应用 总被引:1,自引:0,他引:1
利用KMnO4氧化MnCO3微米球前躯体制备MnO2微米球.X射线衍射(XRD)、扫描电子显微镜(SEM)、循环伏安(CV)法等测试表明:该MnO2微米球由弱结晶α-MnO2构成,粒径为0.5~2μm.测试样品的MnO2微米球载量为5 mg.cm-2时,在2 mol.L-1(NH4)2SO4溶液中表现出良好的电容性能:其于2 mV.s-1的扫速下比电容达到了135.6 F.g-1;即使是100 mV.s-1的高扫速,比电容仍保持为118.8 F.g-1.500次循环过程中充放电效率保持在87.8%以上.第500次循环的比电容为110.5 F.g-1. 相似文献