首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有机聚合物半导体材料与晶体管器件是融合了化学、材料、半导体以及微电子等学科的前沿交叉研究方向.聚合物半导体材料分子是该领域研究的重要内容,其中双极性聚合物分子半导体材料,兼具了电子和空穴的双重载流子输运能力而受到学术界的广泛关注.本文总结了双极性聚合物半导体材料与器件的研究进展,重点介绍了我们在D-A型双极性聚合物分子半导体材料设计、加工技术与器件制备以及功能应用方面的研究工作,并论述了双极性聚合物分子半导体材料与器件研究过程中存在的科学问题及发展方向.  相似文献   

2.
电致发光材料在大屏幕平板显示和移动通讯器件方面有着极大的优越性。Ⅱ-Ⅵ族无机半导体、金属有机化合物及共轭聚合物等都是电致发光材料。由半导体纳米晶体和电致发光聚合物组成的双发光器件中,纳米半导体的发光不仅可以通过掺杂及形成核壳结构来加以调节,而且受到其复合体系类型、纳晶含量、外加电压等因素制约;而无机半导体的高电荷输运特性也将影响聚合物发光层的效率。同时,利用无机纳米半导体的光导特性,这种复合体系也可以制成光导与电致发光双功能器件,且其发光效率可有较大幅度提高。  相似文献   

3.
自20世纪80年代以来,聚合物半导体材料及其薄膜场效应晶体管器件(OFETs)已取得系列突破性进展.目前,已有数百种聚合物半导体材料被成功应用于OFETs中,空穴迁移率值最高已达36.3 cm~2·V~(-1)·s~(-1),可与有机小分子半导体材料甚至可同无定形硅相媲美.综述了近年来国内外高迁移率聚合物半导体的最新进展.分类对比总结和评述了空穴传输型(p-型)、电子传输型(n-型)和双极传输型聚合物半导体材料,并对聚合物半导体材料分子设计思路、薄膜OFETs器件制备及其性能参数进行了重点阐述.同时,总结了聚合物半导体材料的分子结构、聚集态结构与OFETs器件性能之间的内在关系,为今后设计与合成综合性能优异的聚合物半导体材料提供一定理论指导.  相似文献   

4.
有机、聚合物薄膜电致发光器件的研究进展   总被引:10,自引:0,他引:10  
邱勇  高鸿锦  宋心琦 《化学进展》1996,8(3):221-230
有机、聚合物薄膜电致发光器件是近年来国际上的一个研究热点。与无机材料相比, 有机材料具有更高的发光效率和更宽的发光颜色选择范围, 并且具有容易大面积成膜的优越性。本文介绍了有机、聚合物薄膜电致发光器件的结构和制备、发光机理以及有关材料的选择, 并对该研究领域的最新动态、器件的稳定性问题以及应用前景进行了讨论。  相似文献   

5.
有机光电子材料具有柔性、低成本、可大面积加工以及分子结构可调等特点,在可穿戴智能器件领域具有巨大的应用潜力.有机分子可以通过结构的设计调节其光学、电学、机械和化学等特性,从而实现丰富的传感功能.有机智能传感器具有快速响应、高选择性、高灵敏和机械柔性等优势,被广泛应用于环境监测、电子皮肤、医疗监测、人机交互等智能感知领域.本文综述了近年来有机智能传感材料与器件的研究进展,包括小分子半导体、聚合物半导体和导电聚合物等有机传感材料,以及化学传感器、温度传感器、光学传感器和机械传感器等有机智能传感器件的前沿应用,重点介绍了目前生物传感器、仿生传感器等智能感知器件和系统的发展现状,并对其未来发展过程中面临的挑战进行了分析.  相似文献   

6.
二阶非线性光学聚氨酯对电光效应的共振增强   总被引:1,自引:0,他引:1  
二阶非线性光学聚合物是最有希望实现在电光器件方面应用的材料之一.该类材料的非线性光学系数很高,响应速度快,与半导体材料的相容性较好,且比有机和无机晶体的制备更方便.目前所用的电光调制器多为光传输型,高光学活性的极化聚合物一般光学损耗较大,尤其是其吸收波段更大,使得调制器只能在其透明波段内使用,否则,传输型波导器件由于这种损耗将无法使用.  相似文献   

7.
胡文平  董焕丽 《化学进展》2011,(6):1041-1049
聚合物半导体材料因其可溶液加工的特点在构筑大面积、价廉、柔性有机器件方面引起了人们的广泛兴趣.但是,通常情况下,器件中聚合物半导体薄膜都是通过旋涂方式制备,该薄膜中分子的有序性差而且存在大量的晶界和缺陷,这不利于聚合物半导体材料本征性能的合理评价和高性能聚合物光电器件的制备.因此,如何制备高取向聚合物薄膜一直是该领域研...  相似文献   

8.
张凯  黄飞  曹镛 《高分子学报》2017,(9):1400-1414
相对于传统的无机半导体器件,以有机半导体(特别是聚合物半导体)材料为基础的有机光电器件,可采用与传统印刷技术(例如喷墨打印、卷对卷印刷等)相结合的溶液加工方式制备低成本、大面积、柔性光电器件,因而成为广泛关注的焦点,并得到了快速发展.实现溶液加工的高效有机光电器件的一个关键问题是界面问题——如何避免溶液加工时有机层间的互溶以及如何实现可印刷稳定金属电极的高效电子注入等.水/醇溶性共轭聚合物的迅速发展为解决溶液加工多层有机光电器件所面临的界面问题提供了有效手段.研究发现,水/醇溶共轭聚合物不但可以有效避免溶液加工多层器件中的界面互溶,而且还可与高功函数的稳定金属发生界面偶极相互作用而增强其电子注入,从而解决了高功函数稳定金属电子注入的难题,为实现全溶液加工的高效印刷有机光电器件提供了可行的方案.本文介绍了近年来本课题组在水/醇溶共轭聚合物阴极界面材料及器件应用方面的研究进展,并对水/醇溶共轭聚合物阴极界面材料在聚合物发光二极管和聚合物太阳电池中的工作机理进行了探讨.  相似文献   

9.
半导体超晶格材料由于其特殊的光电性质引起人们的关注,So和Tokito等人用分子束沉积的方式制备了有机及有机无机复合的超晶格材料器件,但分子沉积中有机小分子染料的结晶影响薄膜的质量及器件的寿命。最近,我们用两亲性聚合物分子成功地将有机染料分子组装在聚合物LB膜中,有效地限制有机小分子染料结晶,实验证明此多层LB膜具有超晶格结构和较好的稳定性及发光特性。为制备多量子阱结构器件提供了一种新方法。 两亲性聚合物(ES)是由环氧氯丙烷、乙二胺和硬脂酸共聚而成。将染料分子四苯基丁二烯(TPB)与ES相混合的氯仿溶液(TPB与ES质量比为2:10)分散在去离子水亚相表面,在20mN/m的膜压下将其转移到单晶硅片上。用小角X射线衍射实验观察其多层结构,在小角衍射区存在一个Bragg衍射峰(图1),根据Bragg衍射方程得到其层状周期结构为5.8nm。考虑到ES的分子尺寸,我们认为每一周期结构是由两层聚合物的LB膜组成。由于TPB分子是疏水的,通过分子间的相互作用,TPB分子可能镶嵌或吸附在ES的疏水脂肪链中,与无机半导体超晶格结构对照,聚合物ES的亲水网络由于是绝缘材料,带隙很宽相当于能垒,而镶嵌有TPB的疏水层则相当于势阱,这就很可能形成聚合物/有机染料的超晶格结构。考察其发光特性(图2)时,发现聚合物/有机染  相似文献   

10.
叶智杰  陈宇 《化学通报》2022,85(2):155-168
相较于传统无机半导体材料,有机共轭聚合物半导体具有响应光谱高度可调、质量轻、可大面积制备、与柔性基板兼容等优点,其作为光活性层在下一代可穿戴光电探测器的应用中显示出巨大的应用潜力.共轭聚合物具有多样化的结构设计,不同的分子结构对其光物理化学性能可进行灵活调控,进而展现出各具特色的光电特性.同时,通过结构优化亦可赋予共轭...  相似文献   

11.
氢能开发是未来解决能源危机和环境污染问题的理想途径之一,利用太阳能光催化分解水制氢被认为是一种极具潜力的制氢技术,而开发高效、廉价的实用性新型光催化剂是实现这一技术的关键,成为当前该领域的研究热点。目前,光催化制氢材料主要集中于无机半导体材料如金属氧化物或硫化物等体系,但这些传统的光催化材料存在可见光响应弱、制备条件苛刻及资源短缺等问题。相对于无机半导体光催化剂而言,有机半导体光催化剂具有合成方法多样、易功能化修饰、能带结构和电子结构易调控等诸多优势,使其在光催化制氢领域具有巨大的应用潜力。尤其是近年来发展起来的有机共轭微孔聚合物材料,具有传统共轭聚合物的半导体特性及高比表面积的多孔特性,成为一类新型的有机光催化剂材料,吸引了众多的研究关注。本文主要综述了近年来有机共轭微孔聚合物在光催化制氢领域取得的进展,并对有机聚合物光催化剂面临的挑战和未来发展方向做了综合性概括。  相似文献   

12.
近年来,一维有机小分子微纳材料因为其新颖的光学性能和在未来小型化器件中的广泛应用,受到了人们越来越多的关注.相比于传统无机半导体材料,有机小分子材料具有结构多样性、功能可设计性、易大量制备、易机械加工等显著优势.本文将从一维有机小分子纳米材料的制备方法、形貌调控、光学性能(如光波导、受激发射、电致发光等),及其在光学器件上的应用出发,对近十年来的相关研究进展及成果进行总结和介绍.  相似文献   

13.
有机-无机杂化太阳电池综合了有机、无机材料的优点,成本低、理论效率高,受到人们的广泛关注.杂化太阳电池的光活性层由无机半导体和有机共轭聚合物复合而成.当光照射到活性层上时,共轭聚合物吸收光子产生激子(电子-空穴对);激子迁移到有机给体-无机受体的异质结界面处发生解离而产生自由电子和空穴;自由电子和空穴分别向无机半导体和有机聚合物传输,从而实现电荷的分离和传导.激子在有机-无机异质结界面处的分离效率是影响电池性能的一个重要因素.有机、无机两相材料往往因为接触面积小以及相容性差使此两相材料接触不佳,激子迁移到此界面不能有效分离,从而严重影响了杂化太阳电池的效率.这个问题可以通过此界面的修饰加以改善.本文即综述了有机-无机异质结界面修饰的方法、作用和意义,并展望了杂化太阳电池未来的发展趋势和应用前景.  相似文献   

14.
聚合物电致发光材料已成为功能材料研究领域的一个热点.与无机材料和有机小分子材料相比,聚合物发光材料具有来源广泛、易加工成型、通过分子结构设计可调节发光颜色等优点,成为制备大面积、低成本、全色柔性显示器件的首选材料.本文介绍了聚合物发光材料的发光机理及调节发光颜色的常用方法,综述了聚对苯乙炔类、聚对苯类、聚芴类等多种共轭聚合物发光材料的合成及发光颜色调节的研究现状,并对聚合物发光材料的发展趋势以及聚合物电致发光器件的制备进行了评述和展望.  相似文献   

15.
黄飞 《高分子学报》2022,(4):305-306
<正>随着人工智能领域的不断发展,光探测技术越来越受到学术界和工业界的关注.目前商业化的光探测器大多是基于无机半导体材料,例如硅、锗以及III-V族化合物半导体.然而,这类无机材料的制造流程复杂且成本高昂,相比之下,有机/聚合物半导体具有吸收可调、可溶液加工、机械柔性以及易于集成至读出电路的优势,  相似文献   

16.
聚合物太阳能电池以其质量轻、成本低、制备工艺简单等优点成为清洁能源利用的研究热点.近年来聚合物太阳能电池光电转换效率逐步提高,单结聚合物太阳能电池的光电转换效率已超过11%,其中器件的界面修饰层成为影响器件光伏性能的重要因素.本文总结了聚合物太阳能电池阴极修饰层的研究进展,分别从无机材料和有机材料两方面介绍了常用的阴极修饰层材料.无机材料包括金属氧化物、金属和金属化合物等,有机材料包括聚合物、富勒烯衍生物以及n-型有机半导体材料等.本文还从阴极修饰层的电学特性、光学特性、能级位置、表面形貌、界面接触等方面讨论了其对聚合物太阳能电池光伏性能的影响,展望了聚合物太阳能电池的发展前景.  相似文献   

17.
传统的分子材料光电器件如太阳能电池和有机发光二极管通常采用"三明治"型垂直结构.器件通常由透明底电极、薄膜活性层和顶接触电极构成.该结构优化了光与半导体的相互作用以及载流子的注入和收集,实际应用广泛.近些年,为了降低透明电极的使用成本以及更好地实现非薄膜形态纳米半导体材料的器件构筑,一些非"三明治"结构的有机光电器件也取得了很大进展:发展出了具有微米、纳米电极结构的光伏器件、光电导器件、光晶体管器件、纳米间隙电极器件等,拓展了分子基光电材料的应用研究,与传统夹心型二极管器件相互补充、相互完善.本文主要聚焦在各种非"三明治"结构有机光电器件的构筑与功能化,对有代表性的研究成果进行了总结与评述,并对其未来的发展进行了展望.  相似文献   

18.
仿生合成技术通过模拟生物矿化机理,以有机物为模板控制无机物的生成,制备具有特殊结构及性能的无机材料.聚合物是仿生合成中较多采用的有机模板之一,用来控制无机粒子的成核、生长及排列,能够在温和条件下合成具有多级结构、特殊形貌和优异性能的有机,无机复合材料.本文综述了聚合物在仿生合成中的应用研究进展,并指出了存在的问题及发展方向.  相似文献   

19.
有机/无机杂化金属卤化物钙钛矿半导体材料结合了有机材料良好的溶液可加工性以及无机材料优越的光电特性,近几年受到了热捧,成为太阳能电池领域一颗耀眼的明星. 伴随着钙钛矿薄膜结晶过程和形貌的优化、器件结构的改进以及电极界面材料的开发,这类有机/无机杂化金属卤化物钙钛矿太阳能电池的光电转换效率从最初的3.8%迅速提高到目前最高的22.1%. 其中界面工程在提升器件性能上发挥着极其重要的作用. 本文总结了平面p-i-n型钙钛矿太阳能电池中阴极界面修饰层(CBL)的研究进展. CBL从材料上讲可分为无机金属氧化物、金属或金属盐以及有机材料,从构成上讲可分为单层CBL、双层CBLs以及共混型CBL. 本文对这些类型的CBL分别给予详细的介绍. 最后,我们归纳出CBL在改善器件效率和稳定性上所起的作用以及理想CBL所应满足的要求,希望能为以后阴极界面修饰材料的设计提供一定的借鉴.  相似文献   

20.
张会京  侯信 《化学进展》2012,24(11):2106
有机高分子/无机半导体杂化太阳能电池是一类以共轭聚合物和无机半导体材料的复合材料为主要原料制备的太阳能电池。本文详细论述了杂化太阳能电池的工作原理,并根据其工作原理分析了影响杂化太阳能电池效率的影响因素,包括给体材料的选择、异质结形态、光敏层厚度、无机半导体的选择与表面改性及电池的退火处理等,并从各个影响因素的角度对杂化太阳能电池的发展进行了讨论,最后从共轭聚合物的角度对杂化太阳能电池的发展做出了展望,指出想要进一步提高杂化太阳能电池的效率,未来应该在对已知共轭聚合物进行改性或合成新的共轭聚合物上投入更多的精力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号