首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Poly(vinylidene fluoride) (PVDF) exhibits pronounced polymorphs.Its γ phase is attractive due to the electroactive properties.The γ-PVDF is however difficult to obtain under normal crystallization condition.In a previous work,we reported a simple melt-recrystallization approach for producing y-phase rich PVDF thin films through selective melting and subsequent recrystallization.We reported here another approach for promoting the αγ'phase transition to prepare γ-phase rich PVDF thin films.To this end,a stepwise crystallization and subsequent annealing process was used.The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition.It was found that crystallizing the PVDF melt first at 152 ℃ for4 h,then quenching to room temperature and finally annealing the sample at 160 ℃ for 100 h was the most efficient to produce γ-PVDF rich films.This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 ℃,which favors the formation of γ-PVDF crystals for triggering the αγ'phase transition.  相似文献   

2.
The crystallization behavior of syndiotactic polystyrene(s PS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory. On the basis of the differential scanning calorimetric results, it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness, which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization. Further temperature dependent small-angle X-ray scattering(SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition, involving three different regimes: lamellae stable region(25-90 °C), melt-recrystallization region(90-185 °C) and pre-phase transition region(185-195 °C). As a result, recrystallization line, equilibrium recrystallization line and melting line were developed for the s PS γ form crystallization process. Since the melt of γ form involved a γ-to-α/β form phase transition, the melting line was also denoted as the phase transition line in this special case. Therefore, the equilibrium crystallization temperature and melting(phase transition) temperatures were determined at around 390 and 220 °C on the basis of the thermodynamic phase diagram of the s PS γ form.  相似文献   

3.
The crystallization behavior of syndiotactic polystyrene (sPS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory.On the basis of the differential scanning calorimetric results,it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness,which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization.Further temperature dependent small-angle X-ray scattering (SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition,involving three different regimes:lamellae stable region (25-90 ℃),melt-recrystallization region (90-185 ℃) and pre-phase transition region (185-195 ℃).As a result,recrystallization line,equilibrium recrystallization line and melting line were developed for the sPS γform crystallization process.Since the melt of γform involved a γto-α/β form phase transition,the melting line was also denoted as the phase transition line in this special case.Therefore,the equilibrium crystallization temperature and melting (phase transition)temperatures were determined at around 390 and 220 ℃ on the basis of the thermodynamic phase diagram of the sPS γform.  相似文献   

4.
陈尔强 《高分子科学》2013,31(6):946-958
Crystal orientation and melting behavior of poly(ε-caprolactone) in a diblock copolymer of poly(ε-caprolactone)-block-poly(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PCL-b-PMPCS) was investigated. The degrees of polymerization of the PCL and PMPCS block are 200 and 98, respectively. With the PMPCS in a columnar liquid crystalline phase, the diblock is rod-coil one, which exhibits a lamellar phase morphology with the PCL layer thickness of 15.2 nm. Since the glass transition temperature of PMPCS block is much higher than the melting temperature of PCL, the crystallization of PCL is in a one-dimensionally "hard" confinement environment. Mainly on the basis of two-dimensional wide-angle X-ray diffraction experiments, we identified the orientation of PCL isothermally crystallized at various crystallization temperatures (Tcs). At high Tcs (Tc≥10℃), the c-axis of the PCL crystal is along the layer normal of the microphase-separated sturcture. Decreasing Tc can result in the tilting of PCL c-axis with respect to the layer normal. The lower the Tc is, the more the c-axis inclines. Meanwhile, the b-axis of PCL remains perpendicular to the layer normal. At a very low Tc of -78℃, the orientation of the PCL crystals is completely random. For the samples isothermally crystallized at Tc≤10℃, double melting behavior can be observed. While the low temperature endotherm reflects the melting of the crystals originally formed at the Tc applied, the high temperature one is associated with the crystals subjected to the process of recrystallization/reorganization upon heating due to the annealing effect.  相似文献   

5.
王海军 《高分子科学》2015,33(6):823-829
The effects of PEA on the γ-phase PVDF crystal structure and the crystallization of PEA within the pre-existing γ-phase PVDF spherulites have been investigated by optical microscopy(OM), infrared spectroscopy(IR) and scanning electron microscopy(SEM). The results demonstrate that the γ-phase PVDF spherulites consist of the lamellae exhibiting a highly curved scroll-like morphology and develop preferentially in PEA-rich blend. With increasing PEA concentration, the scroll diameter increases and the scrolls are better separated from each other. PEA crystallizes first in the interspherulitic region and transcrystalline layer develops. Subsequently, the transcrystalline layer of PEA continues to grow within the γ-phase PVDF spherulites, e.g., in the region between the scrolls, until impinging on other PEA transcrystalline layers or spherulites. The crystallization kinetics results indicate that the growth rate of PEA crystals in the intraspherulitic region of γ-phase PVDF shows a positive correlation with content of PEA, but a negative one with the crystallization temperature of γ-phase PVDF.  相似文献   

6.
乔从德 《高分子科学》2013,31(9):1321-1328
The melting and crystallization behaviors of poly(ε-caprolactone) (PCL) ultra-thin films with thickness from 15 nm to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 °C may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra-thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.  相似文献   

7.
THE DOUBLE MELTING PEAKS OF POLY(ETHYLENE TEREPHTHALATE)   总被引:2,自引:0,他引:2  
Three sets of PET samples, comprising original (undrawn), uniaxially drawn and biaxially ones, after annealed at 230°, 240°and 250℃respectively, were subjected to DSC thermal analysis, X-ray diffraction analysis and IR analysis. The results indicate that the phenomenon of double melting peaks during DSC analysis is due to the partial melting and recrystallization of the crystallite at the moment of thermal scanning. The lower temperature peak, which varies slightly according to annealing condition, corresponds to the melting of imperfect crystallite, and the higher temperature peak corresponds to the melting of better organized crystallite. In the course of temperature scanning, the unit cell parameters of PET remains unchanged while the crystals turn to better crystal lattice, greater crystal size and more regular folding.We also found that there is a slight reduction in crystal size between the two melting peaks, and an explanation is suggested for this phenomenon.  相似文献   

8.
Semicrystalline polymers can crystallize in the unique crystalline polymorph and show different phase behaviors under the highpressure CO_2 treatment. Understanding such unique crystallization and phase transition behavior is of fundamental importance for the CO_2-assisited processing of semicrystalline polymers. Herein, we investigated the polymorphic crystalline structure, phase transition, and structureproperty relationships of poly(L-lactic acid)(PLLA) treated by CO_2 at different pressures(1-13 MPa) and crystallization temperatures(T_c's, 10-110 °C). PLLA crystallized in the PLLA/CO_2 complex crystals under 7-13 MPa CO_2 at T_c≤50 °C but the common α crystals under the high-pressure CO_2 at T_c≥70 °C. Solid-state nuclear magnetic resonance analysis indicated that the PLLA/CO_2 complex crystals possessed weaker interactions between the PLLA chains than the common α crystals. The PLLA/CO_2 complex crystals were metastable and transformed into the thermally stableα crystals via the solid-to-solid route during heating or annealing at the temperature above 50 °C. The complex crystals of PLLA produced at low T_c was more ductile than the α crystals due to the lower crystallinity and the plasticizing effect of CO_2.  相似文献   

9.
The crystallization and melting behavior of polymers is of theoretical importance. In this work, poly(butylene succinate)(PBS) was selected as an example to study such behavior at low supercooling via introduction of the extended-chain crystal(ECC) of the same polymer as nucleating agent. The crystallization of PBS with its ECC as nucleating agent in a wide temperature range(90–127 °C) and the following melting behavior were studied. It is revealed that the melting point(T_m, for T_c≥113 °C) and the annealing peak temperature(T_a, for T_c=90–100 °C) show similar asymptotic behavior. Both T_m and T_a approach to a value of ca. 3.3 °C higher than the corresponding T_c when the crystallization time tc approaches the starting point. That is to say, the Hoffman-Weeks plot is parallel to T_m=T_c line. The crystallization line became parallel to the melting line when PBS was crystallized at T_c higher than 102 °C. Based on these results, we propose that the parallel relationship and the intrinsic similarity between the T_a and the T_m observed at the two ends of the T_c range could be attributed to the metastable crystals formed at the beginning of crystallization.  相似文献   

10.
Phase transition from form Ⅰto form Ⅲ in syndiotactic polypropylene crystallized at different conditions during tensile deformation at different temperatures was investigated by using in situ synchrotron wide angle X-ray diffraction technique. In all cases, the occurrence of this phase transition was observed. The onset strain of this transition was found to be crystalline thickness decided by crystallization temperature and drawing temperature dependent. The effect of drawing temperature on this phase transition is understood by the changes in mechanical properties with temperature. Moreover, crystalline thickness dependency of the phase transition reveals that this form I to from III phase transition occurs first in those lamellae with their normal along the stretching direction which have not experienced stress induced melting and recrystallization.  相似文献   

11.
The process of nucleation and crystal growth of NaY zeolite over a temperature rangeof 55°--100℃ in the presence of "crystal direction agent " are studied. The apparent ac-tivation energy for nucleation and that for crystal growth are evaluated. The mechanism ofthe recrystallization of NaA into NaY is investigated by adding NaA zeolite to the reactionmixture in which the crystallization of NaY zeolite is proceeding. The recrystallization ofNaA zeolite does not occur until the NaY crystallization from the reaction mixture is com-pleted. Thus the process of recrystallization of NaA into NaY might be shown as follows: Amorphous aluminosilicate gel→NaY NaA→NaY NaA Scanning electron microscopic observations and the recrystallization curves show that therecrystallization of NaA into NaY is getting n with a degradation and dissolution of surfacecrystals on the NaA zeolite and that the nucleation and crystal growth of NaY take placeimmediately at the surface of NaA crystals.  相似文献   

12.
门永锋 《高分子科学》2014,32(9):1210-1217
Phase transition from form Ⅰ to form Ⅲ in syndiotactic polypropylene crystallized at different conditions during tensile deformation at different temperatures was investigated by using in situ synchrotron wide angle X-ray diffraction technique. In all cases, the occurrence of this phase transition was observed. The onset strain of this transition was found to be crystalline thickness decided by crystallization temperature and drawing temperature dependent. The effect of drawing temperature on this phase transition is understood by the changes in mechanical properties with temperature. Moreover, crystalline thickness dependency of the phase transition reveals that this form Ⅰ to from Ⅲ phase transition occurs first in those lamellae with their normal along the stretching direction which have not experienced stress induced melting and recrystallization.  相似文献   

13.
Effects of cooling rate and crystallization and melt temperatures on the melting curves of predomi-nately β-phase isotactic polypropylene (IPP) were investigated by using DSC instrument. Experimental re-sults indicate that the magnitude of βmelting endctherm increases with decreasing cooling rate and withincreasing crystallization temperature. The temperature of melt has no effect on the β-phase crystallizationof IPP below 300℃, but a further increase of the melt temperature will destroy the β-phase nuclei,then the β-phase crystals will not be produced upon cooling. The linear growth rates of α- and β-phasespherulites were determined as a function of temperature between 123 and 140℃. It was found that thegrowth rate of βspherulites is higher than that of αspherulites below 140℃. Studies of the kinetics ofβ-phase crystallization of IPP were also made using a DSC instrument. The results obtained do not fitthe usual Avrami equation. But it can be described by kinetic theory of imcomplete spher  相似文献   

14.
The kinetics of phase transitions including a transition between mesophases were studied for a main-chain thermotropic polyester by means of DSC and depolarizing transmittance techniques. The isothermal process of these transitions was found to be described by the Avrami equation to high conversions. The Avrami exponents n are about 2,4, 5.3 and 2.2 for liquid crystallization, transition between mesophases and crystallization from mesophase respectively. The liquid crystallization from isotropic liquid phase occurs at very low undercoolings with high transformation rate. This behavior is explained as the results of the smaller value of the surface free energy for mesophase than that for crystallites which is evidenced by the very weak temperature dependence of liquid crystallization rate.  相似文献   

15.
CRYSTALLIZATION AND MELTING OF NYLON 610   总被引:1,自引:0,他引:1  
Differential scanning calorimetry was used to study the crystallization andmelting of nylon 610. For nylon 610 crystallized from the melt state (260℃), the overall rateof bulk crystallization can be described by a simple Avrami equation with Avrami exponentn ≈ 2, independent of crystallization temperature. With the experimentally obtainedT_m~0 (235℃ ~ 255℃) of nylon 610, the fold surface free energy σ_e was determined to be35 ~38 erg/cm~2. The effects of annealing temperature and time on the melting of quenchednylon 610 were also investigated. For nylon 610 quenched at room temperature there isonly one DSC endotherm peak DSC scans on annealed samples exhibited an endothermpeak at approximately 10℃ above the annealing temperature. The size and position of theendothermic peak is strongly related to annealing temperature and time. An additionalthird melting was observed when quenched nylon 610 was annealed at high temperaturefor a sufficiently long residence time. The existence of the third melting peak suggests thatmore than one kind of distribution of lamella thickness may occur when quenched nylon610 is annealed. The implications of these results in terms of crystal thickening mechanismwere discussed.  相似文献   

16.
<正>A relatively high predetermined crystallization temperature(135℃) was chosen to grow well developed iPP spherulites,then the partial melting was carried out at a temperature of 165℃,where the preformed spherulites were seen to only decrease their size but not completely melted.The crystallization behavior of partially melted isotactic polypropylene (iPP) has been carefully examined by different scanning calorimetry(DSC) and polarized light microscopy(PLM).The experimental results show that at a special annealing temperature(165℃) the melting behavior of iPP includes two parts with different mechanism,one part is the melting of iPP spherulite outside,another is the partial lamellae perfection during longer annealing time in the unmelted spherulite.The conformational orders of the iPP melt decrease with the increase of the annealing temperature.  相似文献   

17.
张建强  顾群 《高分子科学》2015,33(8):1104-1113
The correlation between ring-opening polymerization(ROP) of cyclic butylene terephthalate(CBT) and crystallization of polymerized CBT(p CBT) strongly affected the final properties of p CBT and its composites.The major objective of this contribution is to pinpoint the threshold temperature between them and the interrelation is successfully disclosed.That is,crystallization during polymerization occurs below 204 °C and the crystallization properties of p CBT are determined by this isothermal ROP stage; polymerization and crystallization are gradually separated with the increase of temperature of ROP(TP) from 204 °C,and the crystallization properties of p CBT are dominated by cooling stage; only polymerization is performed above 212 °C.Moreover,quantitative analysis suggests that uniform crystal size distributions and thicker lamellar crystals derive from the stage of crystallization during polymerization.On the contrary,the crystal size distributions become wider above 204 °C of TP and lead to obvious double melting peaks during heating scan.These efforts provide a very useful guide for the related investigation and application of CBT.  相似文献   

18.
Amorphous poly(9,9-di-n-octyl-2,7-fluorene)(PFO)thin films were characterized in situ via thermal an- nealing based on grazing incidence X-ray diffraction(GIXRD)profiles,UV-visible absorption spectrophotometry,and Fourier transform infrared spectroscopy(FTIR).The results of GIXRD indicated that the amorphous phase transformed into a crystalline phase when the annealing temperature was higher than 80 ℃.Different outcomes were elicited for the intensities and d-spacings of the diffraction peaks below and above 80 ℃,which were attributed to the formation of the κ-phase.The mechanism of phase transition was revealed by in situ UV-visible absorption and FTIR spectra,whereby the rearrangement of the side chains was dominant and the movement of the main chains was minimal,even when the annealing temperature was lower than 80 ℃.In contrast,the rearrangement of the main chains was dominant when the temperature was higher than 80 ℃.  相似文献   

19.
王笃金 《高分子科学》2011,29(2):251-258
The early stage of polymer crystallization may be viewed as physical gelation process,i.e.,the phase transition of polymer from liquid to solid.Determination of the gel point is of significance in polymer processing.In this work,the gelation behavior of poly(butylene succinate)(PBS) at different temperatures has been investigated by rheological method.It was found that during the isothermal crystallization process of PBS,both the storage modulus(G′) and the loss modulus(G″) increase with time,and the rheological response of the system varies from viscous-dominated(G′G″),meaning the phase transition from liquid to solid.The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies.The gel time(t_c) for PBS was found to increase with increasing crystallization temperature.The relative crystallinity of PBS at the gel point is very low(2.5%-8.5%) and increases with increasing the crystallization temperature.The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network,indicating that the network is"loosely"connected,in another word,the critical gel is soft.Due to the elevated crystallinity at gel point under higher crystallization temperature,the gel strength S_g increases, while the relaxation exponent n decreases with increasing the crystallization temperature.These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers.  相似文献   

20.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号