首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
以450℃低温炭化的各向异性中间相沥青基炭纤维为原料,先通过KOH化学活化方法制备出活性炭纤维(ACFs),再对ACFs进行炭化改性,以提高ACFs的导电率,系统地研究了炭化温度对ACFs微观形貌、结晶度、孔结构和超级电容器性能的影响。结果显示:经过1 200℃炭化处理的ACFs(ACFs~(-1)200)电极具有优异的电化学性能,在0.1 A·g~(-1)电流密度下比容量高达204 F·g~(-1),1 000次循环后电容保持率达到97.0%;且电流增至20 A·g~(-1)时依然具有高比容量(149 F·g~(-1)),表明ACFs~(-1)200电极相比于未炭化的ACFs,其导电率、大电流密度下的比容量、循环保持率均显著提高。  相似文献   

2.
利用酸水解稻壳中的半纤维素制备木糖, 并将糖渣经过炭化后分离出碳和硅, 碳采用稀碱溶液活化改性制备电容炭, 硅采用水热法合成了硅酸钙晶须, 从而使稻壳所有组分得到充分利用. 采用循环伏安(CV)和恒流充放电(GCD)研究了电容炭的电化学性能. 通过X射线衍射(XRD)和扫描电子显微镜(SEM)对所得硅酸钙晶须的结构和形貌进行了表征. 实验结果表明, 稻壳酸水解的最优条件为硫酸浓度7%(质量分数)、 固液比(g/mL)为1:8、 反应时间为2.0 h, 在该条件下, 一次水解、 二次水解和三次水解的木糖收率(Y1/Y2/Y3)和浓度(质量分数, C1/C2/C3)都能达到最大值, Y1=98.5%, C1=3.6%; Y2=85.4%, C2=6.3%; Y3=76.6%, C3=9.0%. 采用15 mL 8%(质量分数) NaOH稀碱溶液活化改性制得的电容炭(AC/15)比电容值为77.32 F/g, 而且具有较好的倍率性和循环稳定性; 硅酸钙晶须为扫帚状针钠钙石晶须.  相似文献   

3.
对煤质活性炭、椰壳活性炭和沥青基活性炭进行了硝酸氧化处理。通过酸碱滴定、红外光谱、比表面积和孔径分布测定研究了硝酸氧化对3种活性炭的表面官能团、比表面积和孔结构的影响,以及硝酸氧化对活性炭进一步进行乙二胺胺化的影响。结果表明,在所选的3种活性炭中,氧化对于椰壳活性炭的物理结构破坏最严重,比表面积下降了16%,而煤质活性炭与沥青基活性炭均很好地保持了原有的结构性质。硝酸氧化在不同的活性炭表面均引入了一定量的酸性基团,其中沥青基活性炭氧化后表面酸性基团含量最高,达到2.36mmol/g。氧化后的3种活性炭接枝乙二胺后,沥青基活性炭的表面碱性基团含量最高,达到1.39mmol/g。  相似文献   

4.
以宝清褐煤为原料,使用KOH溶液萃取、活化后制得煤基多孔炭,并利用简单的水热法将褐煤基多孔碳与CoNi_2S_4复合,制备复合电容电极材料。考察了不同碳添加量对褐煤基多孔碳/CoNi_2S_4复合材料电化学性能的影响,结果表明,碳添加量过高或过低都不利于复合材料比电容的提升,而碳添加量为37%的褐煤基多孔碳/CoNi_2S_4复合材料具有较高的比电容和良好的循环性能,该复合电极在4 A/g电流密度下,比电容达到1318.2 F/g,在4000次充放电循环后电容保持率为80.9%。  相似文献   

5.
以商用活性炭(AC)为原料,分别采用磷酸和氢氧化钠改性的方法制备了两种不同的改性活性炭电极材料.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 Brunauer-Emmett-Teller(BET)测试、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段以及电化学分析方法,对改性前后活性炭材料的表面性质和电化学性能进行了探究.结果表明, H3PO4改性使活性炭的孔隙分布更加密集, NaOH改性使活性炭表面的孔隙结构更加清晰均匀; H3PO4和NaOH改性均使活性炭的比表面积增加.循环伏安测试结果表明,改性前后活性炭电极在低扫描速率下均具备良好的双电层特性,并且两种改性处理均能提高活性炭电极的比电容;当扫描速率为5 mV/s时,未改性、 H3PO4以及NaOH改性活性炭电极的比电容分别为36.51, 77.25和85.19 F/g.电吸附实验结果证明,两种改性活性炭电极对Co2+, Mn2+和Ni2+均有较好的去...  相似文献   

6.
氧化锰表面改性活性炭电极材料的电化学特性   总被引:5,自引:0,他引:5  
用Mn(NO3)2溶液浸渍-高温热解法对普通活性炭进行表面改性处理以改善其电化学性能. 采用氮气吸附、SEM、XRD等方法研究改性活性炭的比表面积、孔结构、形貌和氧化锰的晶体结构; 用循环伏安、恒流充放电、交流阻抗等电化学方法研究了改性活性炭电极构成的电化学电容器的性能. 结果表明, Mn(NO3)2热解产生的多价态氧化锰有法拉第赝电容效应, 尤其是立方晶形结构的α-Mn2O3, 与活性炭的双电层电容构成了复合电容, 因而改性炭材料的比电容有明显的提高, 其质量比电容达到254 F·g-1, 比未改性炭的165 F·g-1提高了54%. 改性炭电极电化学电容器具有优异的充放电可逆性和稳定性, 而且等效串联电阻较小, 只有0.40 Ω; 经2000次循环的长期测试, 容量保持率几乎达到100%.  相似文献   

7.
采用快速混合法制备聚苯胺-活性炭复合材料。通过扫描电镜、红外光谱等手段表征材料的形貌结构,通过恒流充放电、循环伏安和交流阻抗等技术测试了材料的电容特性。研究结果表明:制备的纯聚苯胺具有纳米纤维结构,但存在团聚问题;活性炭的加入抑制了纳米纤维之间的团聚,修饰了多孔形貌,降低了电荷传递阻抗,材料的功率特性得以改善,循环性能表现良好。当活性炭的用量为20%时,复合材料的比电容达371F/g,1 000次循环的比电容保持率为66.6%;电流密度由0.2A/g增加至1.5A/g,比电容下降小于5F/g。  相似文献   

8.
利用稻壳热解炭为原料制备镧负载多孔炭复合电极材料(La/PCs),先将稻壳热解炭分离出炭前驱体,再采用原位活化/负载的方法制备一系列镧负载多孔炭复合电极材料,分别考察了煅烧温度和浸渍比对其吸附性能和电化学性能的影响.采用X射线衍射(XRD)、 X射线光电子能谱(XPS)、扫描电子显微镜/X射线能谱仪(SEM-EDS)和Brunauer-Emmett-Teller比表面积(BET)法研究了该系列镧负载多孔炭复合电极材料的金属结构与价态、元素组成及表面形貌,并分析了孔结构与电容值之间可能存在的关系.结果表明,在6 mol/L KOH电解液中, La/PC_900/10材料的电容值为269.45 F/g.在电流密度为0.5 A/g时,由其组装的对称超级电容器具有23.45 W·h/kg的能量密度,此时的功率密度为0.70 kW/kg,并且循环5000次后的电容保持率为86.41%.La/PC_900/10良好的电容性能显示了其作为碳基电极应用于高性能超级电容器的潜力.研究结果为稻壳热解炭的利用和镧在新能源材料领域的应用提供了一条可行路径.  相似文献   

9.
以掺氮空心碳球(N-HCS)为骨架,通过化学氧化聚合法制备了聚苯胺纳米刺/掺氮空心碳球复合材料(PANI/N-HCS),采用扫描电子显微镜、透射电子显微镜和红外光谱仪等对样品的形貌、结构等进行了表征. 采用循环伏安、计时电位和交流阻抗等方法在1 mol/L H2SO4水溶液中考察了材料的电化学性能. 结果表明,PANI/N-HCS具有良好的电化学性能,在0.5 A/g电流密度下,PANI/N-HCS的比电容达346 F/g;当电流密度为20 A/g时,PANI/N-HCS比电容值为228 F/g,电容保持率为66%;在5 A/g电流密度下,经1000次充放电循环后,电容保持率为76%.  相似文献   

10.
炭化温度对烟杆基活性炭孔结构及电化学性能的影响研究   总被引:2,自引:0,他引:2  
夏笑虹  石磊  何月德  杨丽  刘洪波 《化学学报》2011,69(21):2627-2631
以烟杆为原料, 氢氧化钾为活化剂, 通过调节炭化温度(500~800 ℃温度范围)在相同活化条件下制备了具有不同孔隙结构的活性炭材料. N2吸附测试表明随着炭化温度降低, 活性炭的比表面积和总孔容先增大后减小, 中孔比表面积和平均孔径却一直增大. 其中600 ℃炭化样品经KOH活化后可制得比表面积为3333 m2•g-1, 总孔容为2.47 cm3• g-1, 中孔孔容达2.11 cm3•g-1的高中孔率高比表面积活性炭材料. 采用直流充放电法、交流阻抗法和循环伏安法测定上述多孔炭为电极材料的双电层电容器的电化学性能, 结果表明: 炭化温度不同的烟杆基活性炭电极均表现出良好的功率特性, 充放电流增大50倍, 容量保持率均在80%左右, 其中TS-AC-600活性炭电极在有机电解液中1 mA•cm-2充放电时, 比电容达到190 F•g-1. 较高的中孔率和较大的平均孔径使得烟杆基活性炭电极具有良好的高倍率充放电性能.  相似文献   

11.
通过高温碳化聚吡咯纳米管制备了氮掺杂碳纳米管(N-CNTs), 并采用共沉淀法将镍钴层状双氢氧化物(NiCo-LDH)原位生长在N-CNTs上, 制备出具有三维互联网状结构的N-CNTs/NiCo-LDH复合材料. 研究了镍钴摩尔比对N-CNTs/NiCo-LDH复合材料形貌结构和电化学性能的影响. 结果表明, 当镍钴摩尔比为1∶2时, N-CNTs/Ni1Co2-LDH具有最佳的电化学性能. 在1 A/g电流密度下, 其比电容可达1311.8 F/g; 当电流密度为 10 A/g时, 电容保持率高达88.3%, 展现出优异的倍率性; 在经过2500次循环后, 电容保持率仍可达76.4%, 具有良好的循环稳定性.由N-CNTs/Ni1Co2-LDH与活性炭(AC)电极所构建的N-CNTs/Ni1Co2-LDH//AC水系混合型超级电容器, 在750 W/kg功率密度下, 具有27.19 W·h/kg的高能量密度.  相似文献   

12.
以有序介孔碳(OMC)为载体,采用共沉淀法制备了OMC/NiCo2O4复合物.用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱和透射电镜(TEM)研究其结构与形貌,发现NiCo2O4纳米颗粒均匀地负载在有序介孔碳上.循环伏安和恒流充放电测试表明,NiCo2O4质量分数为40%时,在1A·g-1的电流密度下,复合物电极的比电容可以达到577.0F·g-1,电流密度为8A·g-1时,比电容可以达到470.8F·g-1,并具有良好的循环稳定性.在2A·g-1的电流密度下,经过2000次循环后,比电容还可达到508.4F·g-1,电容保持率为92.7%.  相似文献   

13.
聚丙烯腈是一类常见的活性炭前驱体. 本研究以聚丙烯腈为原料,利用化学络合方法来制备铜金属掺杂活性炭. 制备主要分为3步:(1)聚丙烯腈中的腈基被羟胺官能化生成含有大量羟基和氨基的淡黄色肟基化产物;(2)铜离子和肟基复合,生成墨绿色的复合物;(3)复合物在高温下炭化生成铜掺杂活性炭. 该方法并没有直接对活性炭进行掺杂,而是通过对原材料聚丙烯腈进行官能化反应,使之与水溶液中铜离子发生高效络合过程,确保了活性炭原材料掺杂金属的有效性. 将铜掺杂聚丙烯腈原料进行化学活化,得到铜掺杂活性炭. 对其进行循环伏安和充放电测试,发现掺杂金属后电容值由原来的208.3 F/g增加至289.7 F/g (0.5 A/g下测试),电容值约提升了40%. 然而掺杂铜以后,其循环性能有一定程度的下降,这可能是因为掺杂的铜发生了不可逆氧化还原反应,导致其相对循环稳定性下降.  相似文献   

14.
郭继玺  宋贤丽  郭明晰  贾殿赠  仝凤莲 《化学通报》2016,79(10):942-946,951
采用静电纺丝技术制备了柔性煤基碳纳米纤维(CBCNFs)。利用低温等离子体技术对CBCNFs进行改性,并将改性后的CBCNFs作为还原剂与KMn O4反应,以实现Mn O2的原位还原负载制备CBCNFs/Mn O2复合材料。通过X射线衍射、扫描电镜和透射电镜等手段对复合材料的结构与形貌进行了表征;另外,研究了其作为柔性超级电容器电极材料的性能。结果表明,KMn O4∶CBCNFs=2∶1(质量比)条件下制备的复合材料(CBCNFs/Mn O2-2)具有良好的电化学性能。在0.1A·g-1电流密度下,CBCNFs/Mn O2-2的比电容高达118F·g-1,为CBCNFs比电容(26F·g-1)的4.5倍,在1A·g-1电流密度下,循环1000次后比容量保持率为97%,表现出良好的循环稳定性。  相似文献   

15.
以溶胶-凝胶法制备La1-xSrxCoO3(x=0.2,0.4,0.6,0.8)电极材料,XRD表征证明所得产物属钙钛矿相.由循环伏安和充放电曲线测试了La1-xSrxCoO3在碱性介质中的电化学电容性能.结果表明,La0.6Sr0.4CoO3电极10 mA.cm-2电流密度的放电比电容为325 F.g-1,500周期循环后其比电容仍保持于315 F.g-1,比电容保持率97.0%.  相似文献   

16.
以商业微米级锰酸锂(LiMn2O4)为正极,钛酸锂(Li4Ti5O12)为负极,分别与商业活性炭(AC)复合,组装成软包装电池电容样品并进行电化学测试。测试结果表明:当样品正负极均复合AC时,其电化学性能要优于只有正极复合AC和未复合AC的样品。其中,正负极活性炭复合比例为5 wt.%,负极与正极的理论容量比(N/P)为1.01时,电池电容样品拥有良好的倍率性能,且其在0.5 C时的放电比容量为56.4 mAh/g,5 C时的容量保持率为0.5 C的72.2%。此外,与未复合AC的样品相比,单体在5 C倍率下经2000次循环后的容量保持率仍有77.5%,远高于前者的30.4%。  相似文献   

17.
将商业活性炭和石墨烯在饱和硝酸铅溶液中超声浸渍,并通过化学沉积结合高温煅烧制备了氧化铅/石墨烯/活性炭(PbO/GN/AC)复合材料. 采用XRD、SEM、EDS等手段对复合物进行了物相及微观结构表征. 测试结果发现,PbO(约200 nm)颗粒均匀的分散在活性炭和石墨烯的表面. 复合物表现出优异的电化学性能,具有较高的析氢过电位;比电容高达312.6 F·g-1;等效串联内阻仅为1.56 Ω. 6000次循环之后,复合物电极的电容保持率仍达到92.6%. 将5wt%的Pb(PbO)/活性炭材料加入到铅酸电池负极铅膏中制备相应铅炭超级电池,循环次数达到18051次,是普通铅酸蓄电池的3.5倍.  相似文献   

18.
将巨菌草低温预碳化处理,得到粉末炭质材料(JPC),再用不同比例的KOH在不同温度下进行活化处理,得到了以微孔和介孔分布为主的无定形炭材料(JPCK1).所合成的炭材料JPCK1-900-4X的比表面积高达3368 m2/g,具有较大的孔隙体积和0.95%(原子分数)的氮含量.电化学测试结果表明,JPCK1-900-4X在超级电容器应用中表现出优异的储能潜力;在电流密度为0.5 A/g时其比电容为311.7 F/g,电流密度提高到10 A/g时比电容为230 F/g;在电流密度为10 A/g时经过5000次充放电循环后其电容保持率为97.5%;在两电极体系下,当功率密度为250 W/kg时,其能量密度可达17.7 W·h/kg.  相似文献   

19.
采用离子刻蚀和化学气相沉积法制备出具有沸石咪唑酯骨架(ZIFs)型双壳层纳米笼状的CoS/NiCo_2S_4并组装成超级电容器。该结构有较大的比表面积(98 m2·g-1),合适的孔道(孔径4 nm),且保留了ZIFs骨架构型。作为电极活性材料时,具有良好的结构稳定性和电化学活性,有利于增强所组装的超级电容器的循环稳定性和比容量。在三电极体系中,在1 A·g-1的电流密度下,容量为1 230 F·g-1;在3 A·g-1电流密度下循环9 000圈后,初始电容保持率为76.6%。在以该电极、活性炭电极与KOH/聚乙烯醇(PVA)凝胶态电解质组装的器件中,当功率密度为702 W·kg-1时,能量密度达31.6 Wh·kg-1;在7 056 W·kg-1的高功率密度下,仍保持16.5 Wh·kg-1的能量密度。  相似文献   

20.
以乌拉草为原料,采用直接碳化方法,通过热解过程中前驱体自活化(即利用自身包含的活化剂实现分子内的化学活化),并经过必要的除杂过程制备了多孔碳材料Ula C-950-HF.测试了该多孔碳的电化学性质,并与以几种常见的生物质为原料制备的多孔碳材料及商用活性炭的电化学性质进行对比.结果表明,乌拉草基多孔碳材料Ula C-950-HF的电容值为113 F/g,经过4000次循环后,材料的电容值仅降低了4 F/g,显示出用作超级电容器电极材料的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号