首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
聚乳酸较差的耐热性和较慢的结晶速率限制了其应用范围的扩展,左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)共混后形成的立构复合晶(SC)能够促进PLA均质晶(HC)的成核并提高其热稳定性,在改性PLA方面有着巨大应用前景.本研究通过可逆加成-断裂链转移聚合(RAFT)和开环聚合(ROP)法,制备了一系列不同聚苯乙烯(PS)分子量的PS-b-PDLA嵌段共聚物,并将其与PLLA共混,探究了嵌段共聚物及共混物的组成与结晶性能之间的关系.研究结果表明,分子运动性较差的PS嵌段的引入使共混物的结晶更加困难,而低分子量的PS嵌段由于抑制了均质晶(HC)的形成,反而有利于大量立构复合晶(SC)的形成,进而提高了共混物的结晶速率.  相似文献   

2.
合成了系列聚右旋乳酸(PDLA)嵌段重量分率(fw=0~0.61)的窄分子量分布聚苯乙烯-b-聚右旋乳酸二嵌段共聚物(PS-b-PDLA).运用温度调制示差扫描热分析仪(TMDSC)和热台偏振光显微镜(POM)等研究手段,对制备所得的结晶性二嵌段共聚物的热性能、结晶速率与结晶形貌等进行了研究.研究结果表明,与聚右旋乳酸均聚物相比,随着PS-b-PDLA中结晶性PDLA嵌段重量分率fw减少,无定形聚苯乙烯嵌段(PS)对PDLA嵌段链段的结晶抑制作用增强,PS-b-PDLA的热结晶性能与结晶形貌发生显著变化;相对于PDLA均聚物,PS-b-PDLA的冷结晶温度(Tcc)和结晶平衡熔点(Tm0)分别下降14℃和38℃,球晶生长速率明显降低.在无定形PS嵌段链段的玻璃化温度(Tg)附近,二嵌段PS-b-PDLA的结晶行为出现拐点,揭示PS嵌段由于相分离所形成纳米微相空间对PS-b-PDLA中PDLA链段的结晶产生影响,并且该影响作用程度与PDLA嵌段的重量分率fw和结晶温度(Tc)相关。  相似文献   

3.
通过熔融纺丝的方法制备了PLLA/PDLA复合物初生纤维,在60℃拉伸获得高取向的牵伸纤维.采用X-ray散射为主要表征手段,结合差示扫描量热(DSC)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FTIR)等技术,系统研究了不同初始结构的PLLA/PDLA复合物纤维在不同温度下的结晶行为,重点阐明了取向对PLA复合物纤维结晶结构的影响.结果表明,取向促进复合物纤维中立构晶的形成;将纤维升温至200℃停留3 min后,再进行降温,降温过程中,高度取向的牵伸纤维只有立构晶形成,而初生纤维则在150℃左右出现α晶,表明纤维中取向的立构晶会抑制α晶的形成.综合实验结果发现,通过低温牵伸初生纤维,然后高温(α晶熔点以上)退火,可制备出高取向且具有高立构晶含量的PLLA/PDLA复合物纤维.  相似文献   

4.
采用氯仿/乙醇共沸溶液浇铸法制备了混合均匀的聚L-乳酸/聚(天冬氨酸-co-乳酸)共混物(PLLA/PAL)体系.研究了PLLA/PAL共混体系的热性能、结晶行为、形态结构和力学性能,评价了PLLA和PAL之间的相容性.结果表明,PAL对PLLA的结晶行为和热性能产生了较大的影响,共混物的结晶度较低,共混体系中部分PAL会进入PLLA球晶的片晶而导致PLLA球晶结构不完善,熔点降低.PAL的含量小于20%的PLLA/PAL共混物的拉伸强度和断裂延伸率均高于纯PLLA.PLLA和PAL分子链相互缠结,产生的氢键使分子链间存在较强的相互作用,具有较好的相容性.  相似文献   

5.
非晶态聚消旋乳酸(PDLLA)对聚左旋乳酸(PLLA)的结晶行为有较大的影响。本文利用差示扫描量热仪和偏光显微镜对不同分子量PLLA、PDLLA按不同比例制得的共混物结晶进行了研究。结果表明,随PDLLA含量的增大PLLA冷结晶温度升高,且越接近熔融温度。PDLLA分子量较小时PLLA球晶特征被明显破坏,PDLLA分子量较大时PLLA更易保持球晶特征且易形成环带球晶形貌,这与结晶速率与非晶组分的扩散速率匹配程度有关。低分子量的PDLLA使PLLA的最大生长速率对应的温度出现在较低温度。  相似文献   

6.
非晶态聚消旋乳酸(PDLLA)对PLLA的结晶行为有较大的影响。本文利用差示扫描量热仪(DSC)和偏光显微镜(POM)对不同分子量PLLA、PDLLA按不同比例制得的共混物结晶进行了系统研究。结果表明随PDLLA含量的增大PLLA冷结晶温度升高,且越接近熔融温度。PDLLA分子量较小时PLLA球晶特征被明显破坏,PDLLA分子量较大时PLLA更易形保持球晶特征且易形成环带球晶形貌,这与结晶速率与非晶组分的扩散速率匹配程度有关。低分子量的PDLLA使PLLA的最大生长速率对应的温度出现在较低温度。  相似文献   

7.
采用熔融共混方法制备了聚左旋乳酸(PLLA)和超高分子量聚氧化乙烯(PEO)共混物, 通过差示扫描量热(DSC)、 扫描电子显微镜(SEM)和二维广角X射线散射(2D-WAXS)等方法系统研究了PEO的加入对不同温度下PLLA拉伸行为及拉伸过程中微观结构变化的影响. 结果表明, PLLA/PEO共混物为非均相体系, PEO粒子均匀分布在PLLA中形成两相结构. PEO的加入能够显著降低PLLA的玻璃化转变温度(Tg), 在25~60 ℃范围内显著提高PLLA的拉伸性能. 在60 ℃拉伸时, PEO的加入提高了PLLA在拉伸过程中的结晶和形变能力. 在80 ℃拉伸时, 共混物的拉伸断裂伸长率下降, 但共混物的结晶速度仍高于纯PLLA样品.  相似文献   

8.
通过变温广角X射线衍射(WAXD)、 差示扫描量热法(DSC)和偏光显微镜(POM)研究了聚左旋乳酸-聚乙二醇(PLLA-PEG)二嵌段共聚物的非等温结晶行为, 并用Ozawa方程分析了PLLA-PEG的非等温结晶动力学. 实验结果表明, 高熔点的硬段PLLA结晶符合Ozawa理论, 而低熔点的软段PEG对PLLA的结晶起到了稀释剂的作用; 当软段PEG开始结晶时, 已经结晶完全的硬段PLLA限制了PEG的结晶, 使得软段PEG的结晶不符合Ozawa理论. 此外, 不同降温速率下的结晶形貌研究结果表明, 随着降温速率的增加, 晶体经历了从环带球晶、 环带和十字消光的混合球晶到典型的十字消光球晶的转变, 并且球晶的尺寸也明显变小.  相似文献   

9.
合成了末端均为羟基的聚丁二酸丁二醇酯(PBS)预聚物,再以PBS的端羟基引发D-丙交酯(D-LA)开环聚合,得到聚右旋乳酸(PDLA)与PBS的三嵌段共聚物(PDLA-PBS-PDLA).通过凝胶渗透色谱和核磁共振氢谱进行了结构表征.随着m(D-LA)∶m(PBS)由0.51∶1逐渐增加至2.60∶1,PDLA-PDS-PDLA中PDLA链段的长度逐渐增加.随着PDLA嵌段长度的增加,PDLA嵌段对PBS嵌段的限制作用增强,并导致PBS嵌段结晶温度下降,结晶焓降低.当m(D-LA)∶m(PBS)=2.60∶1时,PBS嵌段不再能形成结晶.而m(D-LA)∶m(PBS)在0.51∶1~3.04∶1范围内,PDLA嵌段均可形成结晶,PDLA嵌段的熔点随其在嵌段共聚物中含量的增加而逐渐升高,但PDLA嵌段的熔融焓呈现先增加后降低的趋势.在部分嵌段共聚物中,PBS和PDLA嵌段可各自形成结晶,且PBS和PDLA的结晶结构不随组分的变化而发生改变,表明该嵌段共聚物中PDLA嵌段和PBS嵌段呈微相分离结构.  相似文献   

10.
以辛酸亚锡为催化剂,通过开环聚合法制备了聚左旋乳酸-三亚甲基碳酸酯(PLLA-TMC)和聚右旋乳酸-三亚甲基碳酸酯(PDLA-TMC)无规共聚物.利用共聚物中PLLA/PDLA链段形成立构复合体,通过溶液浇注法制备了PLLA-TMC/PDLA-TMC立构复合聚乳酸材料(sc-PLA-TMC).研究结果表明,聚合物链中的柔性TMC单元可以增强L(D)LA链段的运动能力,有助于不同旋光性的LA链段形成立构复合晶体,但也使得L(D)LA链段的规整度和序列长度降低.即随着共聚物链段中柔性TMC单元摩尔含量的增加,sc-PLA-TMC中同质结晶能力降低.当TMC含量≥5%时,仅生成熔点200℃的PLLA/PDLA立构复合结晶,表明sc-PLA-TMC的耐热性有所提高.蛋白酶K降解实验表明,PL(D)LA-TMC共聚物的降解速率不但比PLLA高,而且可通过共聚物中TMC含量进行调控.  相似文献   

11.
通过熔融共混法制备了一系列等比例聚左旋乳酸(PLLA)/聚右旋乳酸(PDLA)共混试样,采用差示扫描量热法(DSC)、核磁共振(13C-NMR)及广角X射线衍射(WAXD)等方法对共混产物进行了表征和研究分析.结果表明,等比例PLLA和PDLA熔融共混生成了立构复合物(stereocomplex,sc),同时部分均聚物发生酯交换反应,生成了立体嵌段物(stereoblock,sb),从而在DSC升温曲线上sc晶体处出现特殊的熔融双峰现象;随着熔融共混温度升高,sc晶体的生成率和结晶度逐渐下降;聚乳酸立构复合物的加工稳定性较好,二次加工后,sc晶体熔点基本不变,生成率和结晶度提高;由于sc晶体的存在,PLLA/PDLA共混物的耐热性能提高,退火热处理后耐热性能得到进一步提高.这对于开发高耐热聚乳酸及其加工应用具有重要的应用价值.  相似文献   

12.
 本工作对聚氧化乙烯-聚苯乙烯-聚氧化乙烯(PEO-PS-PEO)三嵌段共聚物与聚苯醚(PPO)均聚物共混物的相容性及结晶行为进行了研究。结果表明,共混体系的相容性与嵌段共聚物中苯乙烯段的含量有关,PS含量越高,PPO与共聚物PS段的相容性越好。共混体系的结晶行为也明显不同于一般均聚物共混体系。在DSC降温结晶过程中最多可出现三个结晶峰。  相似文献   

13.
本工作对聚氧化乙烯-聚苯乙烯-聚氧化乙烯(PEO-PS-PEO)三嵌段共聚物与聚苯醚(PPO)均聚物共混物的相容性及结晶行为进行了研究。结果表明,共混体系的相容性与嵌段共聚物中苯乙烯段的含量有关,PS含量越高,PPO与共聚物PS段的相容性越好。共混体系的结晶行为也明显不同于一般均聚物共混体系。在DSC降温结晶过程中最多可出现三个结晶峰。  相似文献   

14.
本文使用虹外光谱及膨胀计等方法,对聚四亚甲基醚二醇类多嵌段共聚物的软链段结晶性进行了研究。在聚醚-聚酯多嵌段共聚物中(PTMEG>60%),其软链段结晶的熔点和结晶速率均随PTMEG含量减少而下降。而在聚醚-聚脲胺酯多嵌段共聚物中,由于N—H和C—O—C之间氢键的作用,即使在低温下,其软链段也难于结晶。此外,高倍拉伸会提高上述二类多嵌段共聚物中软链段结晶的熔点和结晶速率。  相似文献   

15.
聚(L-丙交酯)/聚(DL-丙交酯)的结晶性能及相溶性   总被引:2,自引:0,他引:2  
用共溶液沉淀法制备了聚 (L 丙交酯 ) 聚 (DL 丙交酯 )共混物 (PLLA PDLLA) ,然后用成纤模压法压制成3 2mm的棒材 .用差示扫描量热法研究了共混物的结晶性能和相溶性 .结果表明 ,PLLA组分在共溶液沉淀过程中可生成结晶 ,共混物中PDLLA含量直到 30 %时 ,PLLA组分的结晶熔融温度和结晶度与纯PLLA相同 ,但PDLLA含量为 5 0 %时 ,PLLA组分的结晶熔融温度和结晶度明显下降 .由于加工成型条件的不一致性 ,共混物棒材中的PLLA组分的结晶熔融温度和结晶度呈较大的分散性 .共混物从熔体降温 ,在其后的升温DSC扫描中出现分别相应于PDLLA和PLLA的玻璃化转变 ,表明PDLLA与未结晶的PLLA形成的非晶相是不相溶的  相似文献   

16.
以等比例的聚L乳酸(PLLA)和聚D乳酸(PDLA)树脂为原料,先通过低温共混制备聚乳酸全立构粉末,然后将立构粉末与成核剂、玻璃纤维等混合,直接在注塑机中成型,注塑样品经热处理后,得到高耐热性能聚乳酸(PLA)样品,经测试,其维卡软化温度高达165 ℃以上,差示扫描量热分析(DSC)结果表明,处理后的样品富含立构物结晶,立构物结晶熔融焓高达27.6 J/g。 拉伸强度较纯PLA也有大幅提升,达到129 MPa。  相似文献   

17.
聚丙烯-聚乙烯嵌段共聚物和相应共混物的热分析   总被引:2,自引:2,他引:2  
用DSC研究了预期为聚丙烯-聚乙烯两嵌段共聚物(PP-PE)和相应共混物(PP+PE)在热学性能上的差异。经用不同分子量的PP和PE及其共混物进行试验后发现,由于PP和PE在结晶时出现过冷的难易不同。在共混物降温热分析曲线上,当降温速率较快时仅出现一个放热峰,而降温速率较慢时出现PP和PE各自的结晶放热峰,从而解释了文献中的不同结果。并发现共混物的PP和PE熔融、结晶温度均较组分相同的嵌段共聚物的相应温度为高;嵌段共聚物中PP和PE的△H_f值均低于均聚物的△H_f值,而PE的值降低尤甚。我们认为这与嵌段间的共价键限制嵌段活动和结晶过程有关,从而确认DSC热分析可以作为识别是否为嵌段共聚物的一种方法. 本工作的结果表明,所研究的PP-PE试样具有嵌段结构。  相似文献   

18.
在成型加工过程中,拉伸是提高聚合物材料结晶能力的一种重要手段. 本文采用红外光谱、差示扫描量热分析、X射线衍射等方法系统研究了不同温度下拉伸对聚左旋乳酸(PLLA)结晶行为的影响. 结果表明,在合适的温度条件下,拉伸能迅速提高PLLA的结晶速度和结晶度. 对经过拉伸预处理但未结晶的PLLA样品进行等温及非等温结晶的研究发现,经过拉伸预处理的PLLA样品的结晶速率和结晶度都得到提高,这表明预拉伸会影响PLLA在后续过程中的结晶行为.  相似文献   

19.
 本工作将Leibler、Whitmore和Mayes等近期关于非晶嵌段共聚物共混体系胶束理论应用于结晶嵌段共聚物共混体系的熔融态,对聚甲基丙烯酸甲酯-聚四氢呋喃两嵌段共聚物与聚四氢呋喃均聚物共混体系的结晶行为进行了研究.结果表明,很低的共聚物浓度(如1%),其胶束在共混体系的结晶过程中即可显著地起到抑制成核的作用.这对改善结晶均聚物的形态及性能有一定的应用价值.  相似文献   

20.
本工作将Leibler、Whitmore和Mayes等近期关于非晶嵌段共聚物共混体系胶束理论应用于结晶嵌段共聚物共混体系的熔融态,对聚甲基丙烯酸甲酯-聚四氢呋喃两嵌段共聚物与聚四氢呋喃均聚物共混体系的结晶行为进行了研究.结果表明,很低的共聚物浓度(如1%),其胶束在共混体系的结晶过程中即可显著地起到抑制成核的作用.这对改善结晶均聚物的形态及性能有一定的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号