首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了Fe(acac)3-Al(i-Bu)3(acac=乙酰丙酮)催化降冰片烯(NB)与丙烯酸甲酯(MA)共聚反应条件影响、第三组份影响及催化剂铁铝比影响.并用核磁共振、红外光谱和元素分析方法研究了共聚物的组成,用热分析方法研究了共聚物的分解温度,并用电镜分析了共聚物的膜结构.结果表明,铁系催化剂在温和的反应条件下有较好的催化性能,并可获得能够形成有序多孔膜的共聚物.  相似文献   

2.
茂金属催化乙烯与降冰片烯共聚合研究   总被引:4,自引:0,他引:4  
研究了茂金属催化体系Me2SiCp2MCl2/MAO(M=Zr,ti)催化乙烯与降冰片烯共聚合,考察了不同聚合条件下的共聚及乙烯动力学行为,对共聚物的结构进行了DSC,13C NMR表征.研究表明,在相同的聚合条件下,Zr较Ti有更佳的共聚合催化性能.在相近的投料比条件下,得到了降冰片烯含量和Tg均较文献高的乙烯与降冰片烯的共聚物.  相似文献   

3.
在C5系列的综合利用中近年来倍受关注的环烯烃共聚物是最具有发展潜力的高端产品之一。本文评述了用于乙烯和降冰片烯类共聚合体系新型加成催化剂的最新进展,包括茂金属催化剂、非茂金属催化剂和后过渡金属催化剂三大类。开发新型半夹心型催化剂是茂金属研究领域的热点,目前主要有两类:1.限定几何构型催化剂(CGC);2. Cp’MX3和Cp’M(R)X2 (Cp’=茂基或取代茂基;M=Ti, Zr, Hf;X=卤素或烷基;R=OAr, NR2, NPR3)。非茂金属催化剂则具有亲电能力更强的活性中心及更开放的配位空间,通常具有更高的NB插入率,甚至在一定条件下具有类活性聚合的特征。而后过渡金属催化剂由于对氧(或Lewis酸)更不敏感,导致对极性基团有更好的耐受性。此外,重点围绕配体结构对催化特性的影响,如何提高分子量和环烯烃的有效插入率及其序列结构的调控等进行了对比和剖析,并展望其今后发展趋势。  相似文献   

4.
合成了新型催化剂8-苯胺-1-萘磺酸钛配合物, 并应用于乙烯与降冰片烯的共聚合反应中. 分别考察了助催化剂种类[甲基铝氧烷(MAO)和三乙基铝(TEA)]、 降冰片烯浓度、 Al/Ti摩尔比、 聚合温度和聚合压力对催化活性与共聚性能的影响. 通过核磁共振、示差扫描量热和凝胶渗透色谱等对所制备的共聚物进行了表征. 结果表明, 在相同条件下, 以MAO为助催化剂时, 共聚催化活性更高, 催化剂为单活性中心, 可得到分子量分布较窄(PDI≈3)的共聚产物, 其共聚反应机理为加成聚合. 另外, 随着降冰片烯浓度的升高, 共聚物中降冰片烯单元的摩尔比呈线性上升趋势, 所得共聚物的熔点随之降低.  相似文献   

5.
镍配合物;水杨醛亚胺镍/MMAO催化降冰片烯加成聚合  相似文献   

6.
采用自制的新型双苯并环己酮芳亚胺镍催化剂双苯并环己酮-2,6-二甲基苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3(CH3)2N]CH3}2,C1)和双苯并环己酮-2,6-二氯苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3Cl2N]CH3}2,C2)与三五氟苯硼[B(C6F5)3]结合,在一定的反应条件下可高效催化降冰片烯(NB)与甲基丙烯酸正丁酯(n-BMA)的乙烯基加成共聚合.提出了催化聚合时存在的可能失活机理;研究了不同单体投料比对催化活性、产率及产物性能的影响.根据Kelen-Tüds方法分别估算出2种单体在不同催化体系下的竞聚率,即当催化体系为C1/B(C6F5)3时,竞聚率rn-BMA=0.02,rNB=16.28,rNB·rn-BMA=0.32;当催化体系为C2/B(C6F5)3时,rn-BMA=0.01,rNB=64.83,rNB·rn-BMA=0.65.结果表明,2种单体在2种体系催化下均为无规共聚合.  相似文献   

7.
采用大位阻9,10-二氢-9,10-乙醇蒽~(-1)1,12-二亚胺钯配合物为主催化剂,三五氟苯基硼B(C6F5)3为助催化剂,在甲苯中对降冰片烯与极性降冰片烯衍生物5-降冰片烯-2-乙酸酯进行加成共聚合研究,呈现出高催化活性(1.1×10~4~1.6×10~6g_(polymer)/molPd·h)。当5-降冰片烯-2-乙酸酯加入摩尔比为10~50%时,其插入率为5.53~8.45%。聚合反应产率随着5-降冰片烯-2-乙酸酯加入摩尔比的增大而减小。共聚物的热分解温度T_d、玻璃化转变温度T_g和分子量Mw分别为332.4~432.5℃、259.9~306.6℃和2.3×104~8.6×104g·mol~(-1)。  相似文献   

8.
锆茂均相催化体系催化乙烯与降冰片烯共聚合的研究   总被引:3,自引:2,他引:3  
锆茂均相催化体系催化乙烯与降冰片烯共聚合的研究谢光华,王金梅,张盛庆(中国科学院化学研究所,北京,100080)关键词锆茂均相催化体系,乙烯,降冰片烯,共聚合金属二茂基化合物与甲基铝氧烷(MethylalununoxaneMAO)组成以甲苯为溶剂的均...  相似文献   

9.
β-二酮钛非茂催化剂催化降冰片烯聚合   总被引:1,自引:0,他引:1  
用 (dibenzoylmethanato) 2 Ti(OPh) 2 [(dbm) 2 Ti(OPh) 2 ]/甲基铝氧烷 (MAO)为代表的新型 β 二酮钛非茂催化剂实现了降冰片烯的聚合 ,得到加成聚合和开环易位聚合的混合物 ,研究了实现高聚合活性所需的特殊条件及所得的聚合物结构 ,主要应用傅立叶转变红外技术 (FTIR)对聚合物结构进行了表征和分析  相似文献   

10.
以传统Ziegler-Natta催化体系TiCl4/Al(#em/em#-Bu)3催化降冰片烯(NBE)和异戊二烯(IP)的共聚合, 制得可溶于常规有机溶剂的共聚物, 其数均分子量为2.0 × 104~6.5 × 104, 分子量分布指数为1.5~2.9, 降冰片烯结构摩尔含量为26%~60%. 考察了助催化剂用量、 聚合温度及2种单体投料比对共聚合的影响. 结果表明, 当降冰片烯与异戊二烯的投料摩尔比为4∶6时, 于40 ℃聚合6 h, 得到的共聚物产率为96%, 数均分子量为6.5×104, 降冰片烯结构含量45%. 用 1H NMR, 13CNMR, GPC和DSC等方法表征了共聚产物的微观结构与热性能. 13C NMR DEPT结果表明, 共聚反应中降冰片烯单体以加成方式聚合. DSC结果显示, 共聚物只有一个玻璃化转变温度(Tg=20~40 ℃). 通过Kelen-Tüdös方法得到2种单体的竞聚率分别为rNBE=0.07, rIP=0.44.  相似文献   

11.
2-氨基吡啶镍配合物[(2-PyCH2NAr)NiBr,Ar=2,6-二甲基苯基(a),2,6-二异丙基苯基(b),2,6-二氟苯基(c)]在助催化剂甲基铝氧烷(MAO)作用下能高活性催化β-蒎烯与降冰片烯共聚合,得到分子量分布较宽(PDI≈3.7~5.5)的共聚产物.在相同条件下,配体含F取代的配合物c对共聚合的催化活性最高.对共聚产物用CHCl3和四氢呋喃(THF)萃取分级,得到2个分子量分布较窄(PDI≈2.0)且组成差异较大的级分,其中仅溶于CHCl3而不溶于THF的级分的分子量较高,具有高降冰片烯含量(xN90%);而另一个溶于THF的级分的分子量较低,具有较高的β-蒎烯含量.结果表明,共聚合体系中存在2种不同催化性质的活性中心.TGA分析显示,共聚物有2个热分解温度,随着降冰片烯含量的增加,低温处的失重量逐渐减少.  相似文献   

12.
采用自制的新型双苯并环己酮芳亚胺镍催化剂双苯并环己酮-2,6-二甲基苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3(CH3)2N]CH3}2, C1)和双苯并环己酮-2,6-二氯苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3Cl2N]CH3}2, C2)与三五氟苯硼[B(C6F5)3]结合, 在一定的反应条件下可高效催化降冰片烯(NB)与甲基丙烯酸正丁酯(n-BMA)的乙烯基加成共聚合. 提出了催化聚合时存在的可能失活机理; 研究了不同单体投料比对催化活性、 产率及产物性能的影响. 根据Kelen-Tüdõs方法分别估算出2种单体在不同催化体系下的竞聚率, 即当催化体系为C1/B(C6F5)3时, 竞聚率rn-BMA=0.02, rNB=16.28, rNB·rn-BMA=0.32; 当催化体系为C2/B(C6F5)3时, rn-BMA=0.01, rNB=64.83, rNB·rn-BMA=0.65. 结果表明, 2种单体在2种体系催化下均为无规共聚合.  相似文献   

13.
运用密度泛函方法对含酚-膦配体的半茂钛化合物催化乙烯与降冰片烯共聚合反应的详细机理进行了理论研究。计算结果表明,虽然由于配体的不同,此系列钛化合物具有两种典型结构,但其在助催化剂作用下形成的催化活性种均为相似的P-Ti成键的阳离子物种。在烯烃聚合反应中,烯烃单体的配位插入反应易于从阳离子活性种中氧原子的对位发生。由乙烯及降冰片烯聚合反应各步骤的比较可知,乙烯单体插入Ti-Me结构的初始插入步骤较插入Ti-Et结构困难得多,因而链引发步骤为乙烯均聚的决速步骤。而降冰片烯单体插入Ti-Me结构较之乙烯单体容易得多,但由于降冰片烯单体位阻较大,其连续插入十分困难。在共聚反应过程中,NBE单体的引入可以使得Et插入反应容易越过较难的插入Ti-Me结构步骤,这是NBE与Et共聚反应的反应活性远大于催化Et均聚反应的最主要原因。  相似文献   

14.
运用密度泛函方法对含酚-膦配体的半茂钛化合物催化乙烯与降冰片烯共聚合反应的详细机理进行了理论研究.计算结果表明,虽然由于配体的不同,此系列钛化合物具有两种典型结构,但其在助催化剂作用下形成的催化活性种均为相似的P-Ti成键的阳离子物种.在烯烃聚合反应中,烯烃单体的配位插入反应易于从阳离子活性种中氧原子的对位发生.由乙烯及降冰片烯聚合反应各步骤的比较可知,乙烯单体插入Ti-Me结构的初始插入步骤较插入Ti-Et结构困难得多,因而链引发步骤为乙烯均聚的决速步骤.而降冰片烯单体插入Ti-Me结构较之乙烯单体容易得多,但由于降冰片烯单体位阻较大,其连续插入十分困难.在共聚反应过程中,NBE单体的引入可以使得Et插入反应容易越过较难的插入Ti-Me结构步骤,这是NBE与Et共聚反应的反应活性远大于催化Et均聚反应的最主要原因.  相似文献   

15.
稀土氯化物催化合成降冰片烯衍生物   总被引:1,自引:0,他引:1  
  相似文献   

16.
综述了后过渡金属催化剂催化降冰片烯加成聚合的研究进展。主要介绍了Ni、Pd、Co三种金属催化剂各自的结构以及其催化降冰片烯聚合的特点,同时也阐述了Ni、Pd催化剂催化降冰片烯聚合的机理。  相似文献   

17.
茂钛/MAO催化体系进行降冰片烯聚合的研究   总被引:2,自引:0,他引:2  
以降冰片烯为例的环状烯烃的聚合方式主要有两种 :( A) Vinyl-type polymerization;( B) Ring-Opening Polymerization   80年代中期以前 ,环烯烃聚合研究主要集中在开环易位聚合 (ROMP)反应 [1] .Kaminsky[2 ] 首次以[En(Ind) 2 Zr Cl2 ]/MAO等为催化剂进行降冰片烯的聚合 ,获得了熔点极高 (高于其 40 0℃的分解温度 )的大分子量加成结构的聚合物 .研究结果表明 ,具有 C2 和 Cs对称性的茂锆催化体系能高活性地得到降冰片烯加成聚合物 [3,4 ] ,但是这些由茂锆催化体系合成的降冰片烯聚合物不溶于有机溶剂 ,难以进行精确定量的结…  相似文献   

18.
合成了两种双吡唑亚胺镍配合物: 双-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.1)和双-4-甲氧基-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.2). 研究了Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯(NBE)单体聚合的催化性能, 考察了各种聚合条件, 如温度、Al/Ni摩尔比及催化剂浓度对降冰片烯的催化效率、单体转化率、聚合物分子量及分子量分布的影响. 研究结果表明, Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯聚合具有较高的催化效率, 可达到105 g PNBE/(mol Ni)数量级, 所得聚降冰片烯(PNBE)的重均分子量在105以上, 分子量分布指数在2左右. 聚合产物的1H NMR和FTIR谱分析结果表明, 该聚合反应是以单体的乙烯基加成聚合机理进行的.  相似文献   

19.
TiCl_4/MgCl_2催化丙烯/1-辛烯共聚合研究   总被引:3,自引:2,他引:3  
本文用TiCl_4/MgCl_2-Al(i-Bu)_3催化剂进行丙烯/1-辛烯共聚合,研究发现引入少量共聚单体1-辛烯时,能提高丙烯的聚合活性。30℃时,测得共聚合竟聚率为r_丙=5.63,r_辛=0.32。共聚物的结晶度和己烷不溶物含量随其1-辛烯含量的增加而迅速下降。X射线衍射及~(13)C-NMR测定结果表明,共聚物的己烷可溶部分为非结晶的无规共聚物,己烷不溶部分是具有镶嵌着半个1-辛烯单体单元的长嵌段聚丙烯链结构的结晶性共聚物。  相似文献   

20.
在亚乙基双( 茚基) 二胺化茂铪(rac C2H4(Ind)2Hf(NMe2)2 ,简称1 ,Ind = 茚基,Me= 甲基) 催化作用下,对乙烯(E) 与1 辛烯(O) 无规共聚合进行了研究.作为比较,利用异亚丙基( 环戊二烯基)(1 芴基) 二甲基锆茂催化体系((CH3)2C(Fluo)(Cp)ZrMe2 ,简称2 ,Fluo = 芴基,Cp = 环戊二烯基) 对乙烯/1 辛烯在相同共聚合条件下进行了共聚合.结果表明,在单体浓度比[O]/[E] 较小时共聚合速率随单体浓度比增加而增加,进一步增加单体浓度比则导致共聚合速率降低.催化体系1/Al(iBu)2H/[Ph3C][B(C6F5)4](3) 催化共聚活性比2/ MAO高得多.共聚物中辛烯含量随反应单体1 辛烯含量的增加而增加,两单体竞聚率乘积( rE×ro) 小于1 ,表明聚合物为无规共聚物.相同共聚单体浓度比下1/Al(iBu)2H/3 催化共聚物中辛烯含量比2/ MAO 共聚物中辛烯含量高,表明前者具有更强的共聚合能力.所得无规共聚物熔点温度、结晶度、本体粘度及密度随共聚物中辛烯含量的增加而显著降低.辛烯含量较高时共聚物呈现明显无结晶行为.差示扫描量热分析显示,同乙烯均聚?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号