首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of N-n-Bu4MnO4 with Mn(Oac) 2 · 4H2O and butenoic acid in nonaqueous solvents leads to the formation of the complex [Mn3O(O2CCH = CHCH3) 6(py) 3] ClO4 · py (1). The crystal structure was determined.The complex crystallizes in hexagonal, space group P63/m, unit cell parameters, a = 1. 2456(1)nm, b = 1. 2456(1) nm, c = 1. 8741(1) nm, V=2. 5181(3) nm3, Z =2, and final R1 =0. 0565, wR2 =0. 1465. Variable tem-perature solid tate magnetic susceptibility study shows that the complex [Mn3O(O2CCH = CHCH3)6(py)3] ClO4 (2) has an antiferromagnetic exchange interaction.  相似文献   

2.
The beta-keto phosphorus ylides (n-Bu)3P=CHC(O)Ph 6, (t-Bu)2PhP=CHC(O)Ph 7, (t-Bu)Ph2P=CHC(O)Ph 8, (n-Bu)2PhP=CHC(O)Ph 9, (n-Bu)Ph2P=CHC(O)Ph 10, Me2PhP=CHC(O)Ph 11 and Ph3P=CHC(O)(o-OMe-C6H4) 12 have been synthesized in 80-96% yields. The Ni(II) complexes [NiPh{Ph2PCH...C(...O)(o-OMeC6H4)}(PPh3)] 13, [NiPh{Ph(t-Bu)PCHC(O)Ph}(PPh3)] 15, [NiPh{(n-Bu)2PCH...C(...O)Ph}(PPh3)] 16 and [NiPh{Ph(n-Bu)PCH...C(...O)Ph}(PPh3)] 17 have been prepared by reaction of equimolar amounts of [Ni(COD)2] and PPh3 with the beta-keto phosphorus ylides 12 or 8-10, respectively, and characterized by 1H and 31P{1H} NMR spectroscopy. NMR studies and the crystal structure determination of 13 indicated an interaction between the hydrogen atom of the C-H group alpha to phosphorus and the ether function. The complexes [NiPh{Ph2PCHC(O)Ph}(Py)] 18, [NiPh{Ph(t-Bu)PCHC(O)Ph}(Py)] 19, [NiPh{(n-Bu)2PCH...C(...O)Ph}(Py)] 20, [NiPh{Ph(n-Bu)PCH...C(...O)Ph}(Py)] 21 and [NiPh{Me2PCH...C(...O)Ph}(Py)] 22 have been isolated from the reactions of [Ni(COD)2] and an excess of pyridine with the -keto phosphorus ylides Ph3PCH=C(O)Ph 3 or 8-11, respectively, and characterized by 1H and 31P{1H} NMR spectroscopy. Ligands 3, 8, 10 and 12 have been used to prepare in situ oligomerization catalysts by reaction with one equiv. of [Ni(COD)2] and PPh3 under an ethylene pressure of 30 or 60 bar. The catalyst prepared in situ from 12, [Ni(COD)2] and PPh3 was the most active of the series with a TON of 12700 mol C2H4 (mol Ni)-1 under 30 bar ethylene. When the beta-keto phosphorus ylide 8 was reacted in situ with three equiv. of [Ni(COD)2] and one equiv. of PPh3 under 30 bar of ethylene, ethylene polymerization was observed with a TON of 5500 mol C2H4 (mol Ni)-1.  相似文献   

3.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

4.
Russian Journal of General Chemistry - Bismuth compounds Ph3Bi[OC(O)R]2 (R = CH2C6H4F-3, C6H3F2-2,3, C6HF4-2,3,4,5) were synthesized by the reaction of triphenylbismuth with a carboxylic acid and...  相似文献   

5.
Treatment of [Li(L1)]2 (1) or K(L2) (2) with SnX2 in Et2O yielded the heteroleptic beta-diketiminatotin(II) halides Sn(L1)Cl (3a), Sn(L1)Br (3b) or Sn(L2)Cl (4), even when an excess of the alkali metal beta-diketiminate was used [L1={N(R)C(Ph)}2CH, L2={N(R)C(Ph)CHC(But)N(R)}, R = SiMe3]. From and half an equivalent each of SnCl2.2H2O and SnCl2, or one equivalent of SnCl2.2H2O, the product was Sn(L3)Cl (5) or Sn(L4)Cl (6), in which one or both of the N-R bonds of L1 had been hydrolytically cleaved; the compound Sn(L5)Cl (7) was similarly obtained from and an equivalent portion of SnCl2.2H2O [L3={N(R)C(Ph)CHC(But)N(H)}, L4={N(H)C(Ph)CHC(But)N(H)} and L5={N(H)C(Ph)}2CH]. The halide exchange between 3a and 3b, studied by two-dimensional (119)Sn{1H}-NMR spectroscopy, is attributed to implicate a (mu-Cl)(mu-Br)-dimeric intermediate or transition state. The 13C{1H}-NMR spectra of or showed two distinct resonances for each group, which coalesced on heating, corresponding to DeltaG(338 K)= 69.4 (3a) or 72.8 (3b) kJ mol(-1). The chloride ligand of was readily displaced by treatment with NaNR2, CF3SO3H or CH2(COPh)2, yielding Sn(L1)X [X = NR2 (8), O3SCF3 (9) or {OC(Ph)}2CH (10)]. Oxidative addition of sulfur or selenium to gave the tin(IV) terminal chalcogenides Sn(E)(L1)(NR2)[E = S (11) or Se (12)]. The X-ray structures of the cocrystal of 3a/3b and of the crystalline compounds 5, 6, 8, 11 and are presented, as well as multinuclear NMR spectra of each of the new compounds.  相似文献   

6.
Iridabenzenes [Ir[=CHCH=CHCH=C(CH2R)](CH3CN)2(PPh3)2]2+ (R=Ph 4 a, R=p-C6H4CH3 4 b) are obtained from the reactions of H+ with iridacyclohexadienes [Ir[-CH=CHCH=CHC(=CH-p-C6H4R')](CO)(PPh3)2]+ (R'=H 3 a, R'=CH3 3 b), which are prepared from [2+2+1] cyclotrimerization of alkynes in the reactions of [Ir(CH3CN)(CO)(PPh3)2]+ with HC[triple chemical bond]CH and HC[triple chemical bond]CR. Iridabenzenes 4 react with CO and CH3CN in the presence of NEt3 to give iridacyclohexadienes [Ir[-CH=CHCH=CHC(=CHR)](CO)2(PPh3)2]+ (6) and [Ir[-CH=CHCH=CHC(=CHR)](CH3CN)2(PPh3)2]+ (7), respectively. Iridacyclohexadienes 6 and 7 also convert to iridabenzenes 4 by the reactions with H+ in the presence of CH3CN. Alkynyl iridacyclohexadienes [Ir[-CH=CHCH=CHC(=CH-p-C6H4R')](-C[triple chemical bond]CH)(PPh3)2] (8) undergo a cleavage of C[triple chemical bond]C bond by H+/H2O to produce [Ir[-CH=CHCH=CHC(=CH-p-C6H4R')](-CH3)(CO)(PPh3)2] (10) via facile inter-conversion between iridacyclohexadienes and iridabenzenes.  相似文献   

7.
The carbaalane halogen derivatives [(AlX)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (X = F (9), Cl (7), Br (10), I (11)) were prepared in toluene from [(AlH)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (6) and BF(3).OEt(2), BX(3) (X = Br, I), Me(3)SnF, and Me(3)SiX (X = Cl, Br, I), respectively. A partially halogenated product [(AlH)(2)(AlX)(4)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (12) (X = Cl (approximately 40%), Br (approximately 60%)) was obtained from 5 and impure BBr(3). [(AlH)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (5) was converted to [(AlX)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (X = F (13), Cl (14), Br (15), I (16)) using BF(3).OEt(2) and Me(3)SiX (X = Cl, Br, I), respectively. The X-ray single-crystal structures of 11.C(6)H(6), 12.3C(7)H(8), 13.6C(7)H(8), and 15.4C(7)H(8) were determined. Compounds 7 and 9-11 are soluble in benzene/toluene and could be well characterized by NMR spectroscopy and MS (EI) spectrometry. The results demonstrate the facile substitution of the hydridic hydrogen atoms in 5 and 6 by the halides with different reagents.  相似文献   

8.
The elongated dihydrogen complex [Os{C6H4C(O) CH3}(eta2-H2)(H2O)(PiPr3)2]BF4 reacts with phenylacetylene and HBF4.OEt2 to give the unsaturated compound [Os{(E)-CH=CHPh}(CCPh)(CCH2Ph)(PiPr3)2]BF4 containing alkenyl, alkynyl, and carbyne ligands. The addition of sodium chloride to this compound leads to the cyclic allene Os{=C=C(Ph)CH(Ph)CH=C(CH2Ph)}Cl(PiPr3)2, which is the first isometallabenzene with the structure of a 1,2,4-cyclohexatriene.  相似文献   

9.
The equimolar reactions of Ph 3 Bi with the bifunctional tetradentate Schiff bases proceed with cleavage of two Bi--C bond of Ph 3 Bi and result in the formation of phenylbismuth(III) derivatives PhBi[RC(NC 6 H 4 S)CH 2 (NC 6 H 4 S)CCOOCH 3 ] where R = C 6 H 5 , 4-ClC 6 H 4 ,4-BrC 6 H 4 , and 4-CH 3 C 6 H 4 . Physico-chemical, IR, and NMR ( 1 H and 13 C) spectral studies have been carried out to investigate the structural aspect of these derivatives which reveal a penta coordination around the central Bi atom.  相似文献   

10.
Hayton TW  Wu G 《Inorganic chemistry》2008,47(16):7415-7423
The reaction of [UO 2(Ar 2nacnac)Cl] 2 [Ar 2nacnac = (2,6- (i)Pr 2C 6H 3)NC(Me)CHC(Me)N(2,6- (i)Pr 2C 6H 3)] with Na(RC(O)CHC(O)R) (R = Me, Ph, CF 3) in tetrahydrofuran results in the formation of UO 2(Ar 2nacnac)(RC(O)CHC(O)R) (R = Me, 1; Ph, 2; CF 3, 3), which can be isolated in moderate yields. The structures of 1 and 2 have been confirmed by X-ray crystallography, while the solution redox properties of 1- 3 have been measured by cyclic voltammetry. Complexes 1- 3 exhibit reduction features at -1.82, -1.59, and -1.39 V (vs Fc/Fc (+)), respectively, at a scan rate of 100 mV.s (-1). The decrease in the reduction potential follows the electron-withdrawing ability of each beta-diketonate ligand. Chemical reduction of 1 and 2 with Cp* 2Co in toluene yields [Cp* 2Co][UO 2(Ar 2nacnac)(RC(O)CHC(O)R)] (R = Me, 4; Ph, 5), while reduction of 3 with Cp 2Co provides [Cp 2Co][UO 2(Ar 2nacnac)(CF 3C(O)CHC(O)CF 3)] ( 6). Complexes 4- 6 have been fully characterized, while the solid-state molecular structure of 5 has also been determined. In contrast to the clean reduction that occurs with Cp* 2Co, reduction of 1 with sodium ribbon, followed by cation exchange with [NEt 4]Cl, produces [NEt 4][UO 2(Ar 2nacnac)(H 2CC(O)CH(O)CMe)] ( 7) in modest yield. This product results from the formal loss of H (*) from a methyl group of the acetylacetonate ligand. Alternately, complex 7 can be synthesized by deprotonation of 1 with NaNTMS 2 in good yield.  相似文献   

11.
The cyclophosphazene hydrazide gem-N3P3Ph2[N(Me)NH2]4 was reacted with o-hydroxybenzaldehyde to afford the multisite coordination ligand gem-N3P3Ph2[N(Me)N=CHC6H4-2-OH]4 (LH4). The latter reacted with copper(II) salts to afford a novel tetranuclear copper assembly {N3P3Ph2[N(Me)N=CHC6H4-2-O]4Cu2}2, which contains, remarkably, 15 contiguous inorganic rings.  相似文献   

12.
The hydrothermal reaction of H2tp (tp = terephthalate), [Ph3PCH2Ph]Cl and water with Cd(O2CCH3)(2).2H2O gives rise to a novel ribbon-candy-like supramolecular architecture with twofold interpenetration of an unprecedented 3D 8(2)10-a net formed by polymer ([Ph3PCH2Ph][Cd(tp).Cl].2H2O]n containing giant rhombic channels, which displays strong fluorescent emission in the solid state.  相似文献   

13.
Individual compounds and solid solutions are obtained under hydrothermal conditions in the Bi(2)O(3)-SiO(2)-MnO(2) system in the form of faceted crystals and epitaxial films on the Bi(24)Si(2)O(40) substrate. The crystals have the shape of a cube (for the molar ratio of the starting components Na(2)SiO(3)·9H(2)O:Mn(NO(3))(2)·6H(2)O > 1), a tetrahedron (for Na(2)SiO(3)·9H(2)O:Mn(NO(3))(2)·6H(2)O < 1), or a tetrahedron-cube combination (for Na(2)SiO(3)·9H(2)O:Mn(NO(3))(2)·6H(2)O = 1). Crystal-chemical analysis based on the data of single-crystal and powder X-ray diffraction, IR spectra, and the results of calculation of the local balance by the bond-valence method reveals formation of the Bi(24)(Si(4+),Mn(4+))(2)O(40) phases, which probably include Mn(5+) ions (epitaxial films), as well as the Bi(24)(Si(4+),Bi(3+),Mn(4+))(2)O(40) and Bi(24)(Si(4+),Mn(4+))(2)O(40) phases in the (1 - x)Bi(3+)(24)Si(4+)(2)O(40) - x(Bi(3+)(24)Mn(4+)(2)O(40)) system and the Bi(24)(Bi(3+),Mn(4+))(2)O(40) phase in the (1 - x)Bi(3+)(24)Bi(3+)(2)(O(39)?(1)) - x(Bi(3+)(24)Mn(4+)(2)O(40)) system. Precision X-ray diffraction studies of single crystals of the Bi(24)(Bi,Si,Mn)(2)O(40) general composition show that these sillenites crystallize in space group P23 and not I23 as the Bi(24)Si(2)O(40) phase. The dissymmetrization of sillenite phases is observed for the first time. It is explained by a kinetic (growth) phase transition of the order-disorder type due to population of a crystallographic site by atoms with different crystal-chemical properties and quasi-equilibrium conditions of crystal growth in the course of a hydrothermal synthesis below 400 °C at unequal molar amounts of the starting components in the batch.  相似文献   

14.
A mononuclear Ni(II) complex ([(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1)), supported by the 6-Ph2TPA chelate ligand (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) and containing a cis-beta-keto-enolate ligand having a C2 hydroxyl substituent, undergoes reaction with O2 to produce a Ni(II) monobenzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)), CO, benzil (PhC(O)C(O)Ph), benzoic acid, and other minor unidentified phenyl-containing products. Complex 3 has been identified through independent synthesis and was characterized by X-ray crystallography, 1H NMR, FAB-MS, FTIR, and elemental analysis. A series of cis-beta-keto-enolate Ni(II) complexes supported by the 6-Ph2TPA ligand ([(6-Ph2TPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4), [(6-Ph2TPA)Ni(CH3C(O)CHC(O)CH3)]ClO4 (5), and [(6-Ph2TPA)Ni(PhC(O)CHC(O)C(O)Ph) (6)) have been prepared and characterized. While these complexes exhibit structural and/or spectroscopic similarity to 1, all are unreactive with O2. The results of this study are discussed in terms of relevance to Ni(II)-containing acireductone dioxygenase enzymes, as well as in the context of recently reported cofactor-free, quercetin, and beta-diketone dioxygenases.  相似文献   

15.
Silver(I) and copper(I) halide derivatives of several tetrakis(diphenylphosphinito)resorcinarene ligands are reported. The complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)(M(5)X(5))], with resorcinarene = (PhCH(2)CH(2)CHC(6)H(2))(4), R = C(6)H(11), 4-C(6)H(4)Me, C(4)H(3)S, OCH(2)CCH, or OCH(2)Ph, M = Ag, X = Cl, Br, or I, M = Cu, and X = Cl or I, contain a crownlike [P(4)M(5)X(5)] metal halide cluster. These crown clusters were found to be dynamic in solution, as studied by variable-temperature NMR, and easily fragment to give the corresponding complexes containing [P(4)M(4)X(5)](-) and [P(4)M(2)(micro-X)](+) units. Reaction of pentasilver crown clusters with triflic acid gave the corresponding disilver complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)]Ag(2)(micro-Cl)]]CF(3)SO(3). Thus, these resorcinarene-based ligands act as a platform for the easy and reversible assembly of copper(I) and silver(I) clusters with novel structures.  相似文献   

16.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

17.
The reactions of the singly deprotonated di-2-pyridylmethanediol ligand (dpmdH(-)) with copper(II) and bismuth(III) have been investigated. A new dinuclear bismuth(III) complex Bi(2)(dpmdH)(2)(O(2)CCF(3))(4)(THF)(2), 1, has been obtained by the reaction of BiPh(3) with di-2-pyridyl ketone in the presence of HO(2)CCF(3) in tetrahydrofuran (THF). The reaction of Cu(OCH(3))(2) with di-2-pyridyl ketone, H(2)O, and acetic acid in a 1:2:2:2 ratio yielded a mononuclear complex Cu[(2-Py)(2)CO(OH)](2)(HO(2)CCH(3))(2), 2, while the reaction of Cu(OAC)(2)(H(2)O) with di-2-pyridyl ketone and acetic acid in a 2:1:1 ratio yielded a tetranuclear complex Cu(4)[(2-Py)(2)CO(OH)](2)(O(2)CCH(3))(6)(H(2)O)(2), 3. The structures of these complexes were determined by single-crystal X-ray diffraction analyses. Three different bonding modes of the dpmdH(-) ligand were observed in compounds 1-3. In 2, the dpmdH(-) ligand functions as a tridentate chelate to the copper center and forms a hydrogen bond between the OH group and the noncoordinating HO(2)CCH(3) molecule. In 1 and 3, the dpmdH(-) ligand functions as a bridging ligand to two metal centers through the oxygen atom. The two pyridyl groups of the dpmdH(-) ligand are bound to one bismuth(III) center in 1, while in 3 they are bound two copper(II) centers, respectively. Compound 3 has an unusual one dimensional hydrogen bonded extended structure. The intramolecular magnetic interaction in 3 has been found to be dominated by ferromagnetism. Crystal data: 1, C(38)H(34)N(4)O(14)F(12)Bi(2), triclinic P&onemacr;, a = 11.764(3) ?, b = 11.949(3) ?, c = 9.737(1) ?, alpha =101.36(2) degrees, beta = 105.64(2) degrees, gamma = 63.79(2) degrees, Z = 1; 2, C(26)H(26)N(4)O(8)Cu/CH(2)Cl(2), monoclinic C2/c, a = 25.51(3) ?, b = 7.861(7) ?, c = 16.24(2) ?, beta = 113.08(9) degrees, Z = 4; 3, C(34)H(40)N(4)O(18)Cu(4)/CH(2)Cl(2), triclinic P&onemacr;, a = 10.494(2) ?, b = 13.885(2) ?, c = 7.900(4) ?, alpha =106.52(2) degrees, beta = 90.85(3) degrees, gamma = 94.12(1) degrees, Z = 1.  相似文献   

18.
Two new dirhodium(II) catalysts of general formula Rh(2)(N-O)(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (N-O = C(4)H(4)NO(2)) are prepared, starting from Rh(2)(O(2)CCH(3))(2)(PC)(2)L(2) [PC = (C(6)H(4))P(C(6)H(5))(2) (head-to-tail arrangement); L = HO(2)CCH(3)]. The thermal reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with the neutral succinimide stereoselectively gives one compound that according to the X-ray structure determination has the formula Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (1). It corresponds to the polar isomer with two bridging imidate ligands in a head-to-head configuration. However, stepwise reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with (CH(3))(3)SiCl and potassium succinimidate yields a mixture of 1 and one of the two possible isomers (structure B) with a head-to-tail configuration of the imidate ligands, Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (2), also characterized by X-ray methods. In solution, compound 2 undergoes slow isomerization to 1; the rate of this process is enhanced by the presence of acetonitrile. Compounds 1 and 2 are obtained as pure enantiomers starting from (M)- and (P)-Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) rather than from the racemic mixture. Their enantioselectivities in cyclopropanation of 1-diazo-5-penten-2-one are similar to those reported for the dirhodium amidate catalysts.  相似文献   

19.
Ten ferrocene-containing liquid crystalline materials,pFcC6H4CO2C6H4N-CHC6H4O2CC6H3BrOCnH2n 1(type I)and p-FcC6H4N=CHC6H4O2CC6H3BrOCnH2n 1(type II),were synthesized by condensation reactions of two ferrocenesubstituted amines,p-FcC6H4CO2C6H4NH2(4)and pFcC6H4NH2(5)(Fc:ferrocenyl)with five bromo-substituted benzaldehydes(3)(H2n 1CnOC6H3BrCOOC6H4CHO,n=2,4,6,8and 10).Their mesogenic behaviors were studied by hot-stage polarized optical microscopy and differential scanning calorimetry,The effects of structure(rigid core,terminal chain length)on the phase transition behaviors were discussed.  相似文献   

20.
The elongated dihydrogen complex [formula: see text](1) reacts with 1,1-diphenyl-2-propyn-1-ol and 2-methyl-3-butyn-2-ol to give the hydride-hydroxyvinylidene-pi-alkynol derivatives [OsH{=C=CHC(OH)R2}{eta2-HC(triple bond)CC(OH)R2}(PiPr3)2]BF4 (R = Ph (2), Me (3)), where the pi-alkynols act as four-electron donor ligands. Treatment of 2 and 3 with HBF(4) and coordinating solvents leads to the dicationic hydride-alkenylcarbyne compounds [OsH((triple bond)CCH=CR2)S2(PiPr3)2][BF4]2 (R = Ph, S = H(2)O (4), CH(3)CN (5); R = Me, S = CH(3)CN (6)), which in acetonitrile evolve into the alkenylcarbene complexes [Os(=CHCH=CR2)(CH3CN)3(PiPr3)2][BF4](2) (R = Ph (7), Me (8)) by means of a concerted 1,2-hydrogen shift from the osmium to the carbyne carbon atom. Treatment of 2-propanol solutions of 5 with NaCl affords OsHCl2((triple bond)CCH=CPh2)(PiPr3)2 (10), which reacts with AgBF(4) and acetonitrile to give [OsHCl((triple bond)CCH=CPh2)(CH3CN)(PiPr3)2]BF(4) (11). In this solvent complex 11 is converted to [OsCl(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF(4) (12). Complex 5 reacts with CO to give [Os(=CHCH=CPh2)(CO)(CH3CN)2(PiPr3)2][BF(4)](2) (15). DFT calculations and kinetic studies for the hydride-alkenylcarbyne to alkenylcarbene transformation show that the difference of energy between the starting compounds and the transition states, which can be described as eta(2)-carbene species [formula: see text] increases with the basicity of the metallic center. The X-ray structures of 4 and 7 and the rotational barriers for the carbene ligands of 7, 8, and 12 are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号