首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the persistence of the asymptotic stability of delay equations both under linear and nonlinear perturbations. Namely, we consider nonautonomous linear delay equations v′ = L(t)v t with a nonuniform exponential contraction. Our main objective is to establish the persistence of the nonuniform exponential stability of the zero solution both under nonautonomous linear perturbations, i.e., for the equation v′ = (L(t) + M(t))v t , thus discussing the so-called robustness problem, and under a large class of nonlinear perturbations, namely for the equation v′ = L(t)v t + f(t, v t ). In addition, we consider general contractions e λρ(t) determined by an increasing function ρ that includes the usual exponential behavior with ρ(t) = t as a very special case. We also obtain corresponding results in the case of discrete time.  相似文献   

2.
We study operators of the form Lu = — G(t) u(t) in L2([t0δ, t0 + δ], H) with = L2 ([t0δ, t0 + δ], H ) in the neighbourhood [t0δ, t0 + δ] of a point t0 ∈ ℝ1. Such problems arise in questions on local solvability of partial differential equations (see [6] and [7]). For these operators,one of the major questions is if they are invertible in a neighbourhood of a point t ∈ ℝ1. To solve this problem we establish needed commutator estimates. Using the commutator estimates and factorization theorems for nonanalytic operator-functions we give additional conditions for the nonanalytic operator -function G(t) and show that the operator L (or ) with some boundary conditions is local invertible.  相似文献   

3.
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceilFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceil$, improving a recent result by Fox, Loh and Sudakov. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 206–209, 2010  相似文献   

4.
We study the p-system with viscosity given by vt ? ux = 0, ut + p(v)x = (k(v)ux)x + f(∫ vdx, t), with the initial and the boundary conditions (v(x, 0), u(x,0)) = (v0, u0(x)), u(0,t) = u(X,t) = 0. To describe the motion of the fluid more realistically, many equations of state, namely the function p(v) have been proposed. In this paper, we adopt Planck's equation, which is defined only for v > b(> 0) and not a monotonic function of v, and prove the global existence of the smooth solution. The essential point of the proof is to obtain the bound of v of the form b < h(T) ? v(x, t) ? H(T) < ∞ for some constants h(T) and H(T).  相似文献   

5.
One considers an elastic halfspace with depth (x1) dependent density Q and Lamé moduli (λ,m?). Impulsive stresses τli = δ(x2, x3)δ(t) for x1 = 0 are applied with displacement responses ui = gi(t, x2, x3) at x1 = 0 (i = 1, 2, 3). Let vi(t, x1) = ∫∫uidx2dx3 (i = 1, 2 is enough) and set w(t, x1) = ∫∫x2u1dx2dx3. One obtains a system of 3 differential equations for v1, v2, and w to which the spectral techniques of inverse scattering theory are applied as in [25]. The inverse problems for the uncoupled vi can then be solved to produce 2 functions A1 and A2 involving (Q, λ, μ) as functions of “bound” variables y1 and y2 containing (Q, λ, μ), between which a relation then is determined. Analysis of the coupled equation for w then leads to a Fredholm integral equation whose solution provides an additional relation between (Q, λ, μ) from which (Q, λ, μ) can be determined as functions of x1. The integral equation is reduced to a Volterra type equation by results and techniques of transmutation and then solved by a modification of standard techniques. A number of features and results of independent mathematical interest arise from the transmutation theory.  相似文献   

6.
Let A be a positive definite operator in a Hilbert space and consider the initial value problem for u t =–A2 u. Using a representation of the semi group exp(–A2 t) in terms of the group exp(iAt) we express u in terms of the solution of the standard heat equation w t = w yy , with initial values v solving the initial value problem for v y = iAv. This representation is used to construct a method for approximating u in terms of approximations of v. In the case that A is a 2nd order elliptic operator the method is combined with finite elements in the spatial variable and then reduces the solution of the 4th order equation for u to that of the 2nd order equation for v, followed by the solution of the heat equation in one space variable.  相似文献   

7.
A collection of k‐subsets (called blocks) of a v‐set X (v) = {1, 2,…, v} (with elements called points) is called a t‐(v, k, m, λ) covering if for every m‐subset M of X (v) there is a subcollection of with such that every block K ∈ has at least t points in common with M. It is required that vkt and vmt. The minimum number of blocks in a t‐(v, k, m, λ) covering is denoted by Cλ(v, k, t, m). We present some constructions producing the best known upper bounds on Cλ(v, k, t, m) for k = 6, a parameter of interest to lottery players. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
Sufficient conditions are established for oscillation of second order super half linear equations containing both delay and advanced arguments of the form where ?δ (u) = |u |δ –1u; α > 0, βα, and γα are real numbers; k, p, q, e, τ, σ are continuous real‐valued functions; τ (t) ≤ t and σ (t) ≥ t with limt →∞ τ (t) = ∞. The functions p (t), q (t), and e (t) are allowed to change sign, provided that p (t) and q (t) are nonnegative on a sequence of intervals on which e (t) alternates sign. As an illustrative example we show that every solution of is oscillatory provided that either m1 or m2 or r0 is sufficiently large (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
SiaK un insieme piano ad ampiezza costante δ, ?K la sua frontiera ev t (K) la misura approssimante la misura unidimensionale di Hausdorff μ1(K), ottenuta con ricoprimento chiusi di diametro non superiore att. E′ noto che l'unica discontinuità perv t (K) e perv t (?K) si può avere pert=δ. In questo scritto si approfondisce lo studio di queste discontinuità e si dimostra tra l'altro che i salti in δ div t (K) ev t (?K) sono uguali.  相似文献   

10.
A one dimensional problem for SH waves in an elastic medium is treated which can be written as vtt = A?1 (Avy)y, A = (?μ)1/2, ? = density, and μ = shear modulus. Assume A ? C1 and A′/A ? L1; from an input vy(t, 0) = ?(t) let the response v(t, 0) = g(t) be measured (v(t, y) = 0 for t < 0). Inverse scattering techniques are generalized to recover A(y) for y > 0 in terms of the solution K of a Gelfand-Levitan type equation, .  相似文献   

11.
Let {G n } be a sequence of finite transitive graphs with vertex degree d = d(n) and |G n | = n. Denote by p t (v, v) the return probability after t steps of the non-backtracking random walk on G n . We show that if p t (v, v) has quasi-random properties, then critical bond-percolation on G n behaves as it would on a random graph. More precisely, if $\mathop {\rm {lim\, sup\,}} \limits_{n} n^{1/3} \sum\limits_{t = 1}^{n^{1/3}} {t{\bf p}^t(v,v) < \infty ,}$ then the size of the largest component in p-bond-percolation with ${p =\frac{1+O(n^{-1/3})}{d-1}}Let {G n } be a sequence of finite transitive graphs with vertex degree d = d(n) and |G n | = n. Denote by p t (v, v) the return probability after t steps of the non-backtracking random walk on G n . We show that if p t (v, v) has quasi-random properties, then critical bond-percolation on G n behaves as it would on a random graph. More precisely, if
lim sup  n n1/3 ?t = 1n1/3 tpt(v,v) < ¥,\mathop {\rm {lim\, sup\,}} \limits_{n} n^{1/3} \sum\limits_{t = 1}^{n^{1/3}} {t{\bf p}^t(v,v) < \infty ,}  相似文献   

12.
Since Mao initiated the study of stabilization of ordinary differential equations (ODEs) by stochastic feedback controls based on discrete-time state observations in 2016, no more work on this intriguing topic has been reported. This article investigates how to stabilize a given unstable linear non-autonomous ODE by controller σ(t)xt)dB(t), and how to stabilize an unstable nonlinear hybrid SDE by controller G(rt))xt)dB(t), where δt represents time points of observation with sufficiently small observation interval, B(t) is a Brownian motion and r(t) is the Markov Chain, in the sense of pth moment (0 < p < 1) and almost sure exponential stability.  相似文献   

13.
The standard Erdős-Rényi model of random graphs begins with n isolated vertices, and at each round a random edge is added. Parametrizing n/2 rounds as one time unit, a phase transition occurs at time t = 1 when a giant component (one of size constant times n) first appears. Under the influence of statistical mechanics, the investigation of related phase transitions has become an important topic in random graph theory. We define a broad class of graph evolutions in which at each round one chooses one of two random edges {v 1, v 2}, {v 3, v 4} to add to the graph. The selection is made by examining the sizes of the components of the four vertices. We consider the susceptibility S(t) at time t, being the expected component size of a uniformly chosen vertex. The expected change in S(t) is found which produces in the limit a differential equation for S(t). There is a critical time t c so that S(t) → ∞ as t approaches t c from below. We show that the discrete random process asymptotically follows the differential equation for all subcritical t < t c . Employing classic results of Cramér on branching processes we show that the component sizes of the graph in the subcritical regime have an exponential tail. In particular, the largest component is only logarithmic in size. In the supercritical regime t > t c we show the existence of a giant component, so that t = t c may be fairly considered a phase transition. Computer aided solutions to the possible differential equations for susceptibility allow us to establish lower and upper bounds on the extent to which we can either delay or accelerate the birth of the giant component. Research supported by the Australian Research Council, the Canada Research Chairs Program and NSERC. Research partly carried out while the author was at the Department of Mathematics and Statistics, University of Melbourne.  相似文献   

14.
In any r‐uniform hypergraph for 2 ≤ tr we define an r‐uniform t‐tight Berge‐cycle of length ?, denoted by C?(r, t), as a sequence of distinct vertices v1, v2, … , v?, such that for each set (vi, vi + 1, … , vi + t ? 1) of t consecutive vertices on the cycle, there is an edge Ei of that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ ?, where ? + jj. For t = 2 we get the classical Berge‐cycle and for t = r we get the so‐called tight cycle. In this note we formulate the following conjecture. For any fixed 2 ≤ c, tr satisfying c + tr + 1 and sufficiently large n, if we color the edges of Kn(r), the complete r‐uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t‐tight Berge‐cycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 34–44, 2008  相似文献   

15.
The delta function initial condition solution v*(x,t;y) at x = y ≥ 0 of the generalized Feller equation is used to define a generalized Jacobi Theta function \documentclass{article}\pagestyle{empty}\begin{document}$ \Theta (x,t) = \upsilon *(x,t;0) + 2\sum\limits_{n = 1}^\infty {v*(x,t;y_n)} $\end{document} for a sufficiently rapidly increasing and unbounded positive sequence {yy}. It is shown that Θ(x,t) is analytic in each variable in certain regions of the complex x and t planes and that it is a solution of the generalized Feller equation. For those parameters for which this equation reduces to the heat equation, Θ(x,t) reduces to the third Jacobi Theta function.  相似文献   

16.
For a nontrivial connected graph G of order n and a linear ordering s: v 1, v 2, …, v n of vertices of G, define . The traceable number t(G) of a graph G is t(G) = min{d(s)} and the upper traceable number t +(G) of G is t +(G) = max{d(s)}, where the minimum and maximum are taken over all linear orderings s of vertices of G. We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs G for which t +(G) − t(G) = 1 are characterized and a formula for the upper traceable number of a tree is established. Research supported by Srinakharinwirot University, the Thailand Research Fund and the Commission on Higher Education, Thailand under the grant number MRG 5080075.  相似文献   

17.
We introduce a large class of nonautonomous linear differential equations v=A(t)v in Hilbert spaces, for which the asymptotic stability of the zero solution, with all Lyapunov exponents of the linear equation negative, persists in v=A(t)v+f(t,v) under sufficiently small perturbations f. This class of equations, which we call Lyapunov regular, is introduced here inspired in the classical regularity theory of Lyapunov developed for finite-dimensional spaces, that is nowadays apparently overlooked in the theory of differential equations. Our study is based on a detailed analysis of the Lyapunov exponents. Essentially, the equation v=A(t)v is Lyapunov regular if for every k the limit of Γ(t)1/t as t→∞ exists, where Γ(t) is any k-volume defined by solutions v1(t),…,vk(t). We note that the class of Lyapunov regular linear equations is much larger than the class of uniformly asymptotically stable equations.  相似文献   

18.
Let A be a selfadjoint linear operator in a Hilbert space H. The DSM (dynamical systems method) for solving equation Av=f consists of solving the Cauchy problem , u(0)=u0, where Φ is a suitable operator, and proving that (i) ∃u(t)∀t>0, (ii) ∃u(∞), and (iii) A(u(∞))=f. It is proved that if equation Av=f is solvable and u solves the problem , u(0)=u0, where a>0 is a parameter and u0 is arbitrary, then lima→0limt→∞u(t,a)=y, where y is the unique minimal-norm solution of the equation Av=f. Stable solution of the equation Av=f is constructed when the data are noisy, i.e., fδ is given in place of f, ‖fδf‖?δ. The case when a=a(t)>0, , a(t)↘0 as t→∞ is considered. It is proved that in this case limt→∞u(t)=y and if fδ is given in place of f, then limt→∞u(tδ)=y, where tδ is properly chosen.  相似文献   

19.
Values of?λ?are determined for which there exist positive solutions of the system of functional differential equations, u″?+?λa(t)f(v t )?=?0,v″?+?λb(t)g(u t )?=?0, for 0?t?u(s)?=?v(s)?=?φ(s), ?r?≤?s?≤?0, and the boundary conditions u(0)?=?v(0)?=?φ(0)?=?u(1)?=?v(1)?=?0. A Guo–Krasnosel'skii fixed point theorem is applied.  相似文献   

20.
A vertex v of a graph G is called groupie if the average degree tv of all neighbors of v in G is not smaller than the average degree tG of G. Every graph contains a groupie vertex; the problem of whether or not every simple graph on ≧2 vertices has at least two groupie vertices turned out to be surprisingly difficult. We present various sufficient conditions for a simple graph to contain at least two groupie vertices. Further, we investigate the function f(n) = max minv (tv/tG), where the maximum ranges over all simple graphs on n vertices, and prove that f(n) = 1/42n + o(1). The corresponding result for multigraphs is in sharp contrast with the above. We also characterize trees in which the local average degree tv is constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号