首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pd/Fe3O4-MCNT磁性催化剂的制备、表征及催化性能   总被引:1,自引:0,他引:1  
利用多元醇法制备了单分散Fe3O4纳米粒子修饰多壁碳纳米管(MCNT)的磁性复合材料, 并以X射线衍射(XRD)、透射电镜(TEM)和X射线能量色散谱(EDS)对碳纳米管磁性复合材料的结构和组成进行了表征. 研究发现, 通过调控Fe3O4前驱体与MCNT载体的质量比, 可以很好地控制沉积的磁性纳米粒子大小. 以碳纳米管磁性复合材料为载体, 采用多元醇法成功制备了Pd负载量为3.0% (w)的Pd/Fe3O4-MCNT磁性催化剂. 磁性质测试表明碳纳米管磁性复合材料在负载Pd前后都具有良好的超顺磁性. 以肉桂醛加氢为探针反应研究了Pd/Fe3O4-MCNT的催化性能, 结果表明该催化剂表现出良好的催化加氢性能, 在外加磁场下催化剂能与液相反应体系高效分离, 循环使用4次后, 催化性能没有明显下降, 显示了良好的循环利用性能.  相似文献   

2.
张世华  朱汇雯  张明祖  倪沛红 《化学学报》2011,69(18):2166-2172
结合原子转移自由基聚合(ATRP)与点击反应("Click"reaction),在SiO2包裹的Fe3O4磁性纳米粒子(Fe3O4@SiO2)表面接枝聚[甲基丙烯酸-2-(N,N-二甲氨基)乙酯](PDMAEMA),得到了表面接枝PDMAEMA的磁性纳米粒子(Fe3O4@SiO2-g-PDMAEMA).通过1H NMR...  相似文献   

3.
This paper describes a new strategy through noncovalent functionalization of multi-walled carbon nanotubes (MWNTs) by a kind of new copolymer Polyethyleneimine-graft-Polyacrylonitrile for attaching CdSe nanoparticles onto the MWNTs to fabricate Carbon Nanotube/CdSe heterostructures. Polyethyleneimine (PEI), an amino-rich cationic polyelectrolyte, can interact with the MWNTs through electrostatic interaction. Then, CNT/PEI-g-PAN was successfully prepared by in situ atom transfer radical polymerization (ATRP), which did not introduce defects to the structure of CNTs. Thus, CdSe nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic. TEM, XRD, EDS and FT-IR are all used to characterize the CNT/CdSe composite materials. In addition, the optical properties are investigated by UV–vis spectrum.  相似文献   

4.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

5.
Shen S  Ren J  Chen J  Lu X  Deng C  Jiang X 《Journal of chromatography. A》2011,1218(29):4619-4626
For the first time, magnetic multiwalled carbon nanotubes (MWNTs) combined with near-infrared radiation-assisted desorption (NIRAD) was successfully developed for the determination of tissue distribution of doxorubicin liposome injects (DOXLI) in rats. The magnetic MWNTs nanomaterials were synthesized via a simple hydrothermal process. Magnetic Fe(3)O(4) beads, with average diameters of ca. 200 nm and narrow size distribution, were decorated along MWNTs to form octopus-like nanostructures. The hybrid nanocomposites provided an efficient way for the extraction and enrichment of doxorubicin (DOX) via π-π stacking of DOX molecules onto the polyaromatic surface of MWNTs. DOX adsorbed with magnetic MWNTs could be simply and rapidly isolated through a magnetic field. In addition, due to the near-infrared radiation (NIR) absorption property of MWNTs, irradiation with NIR laser was employed to induce photothermal conversion, which could trigger rapid DOX desorption from DOX-loaded magnetic MWNTs. Extraction conditions such as amount of magnetic MWNTs added, pH values, adsorption time, desorption solvent and NIR time were investigated and optimized. Method validations including linear range, detection limit, precision, and recovery were also studied. The results showed that the proposed method based on magnetic MWNTs coupled to NIRAD was a simple, rapid and high efficient approach for the analysis of DOXLI in rat tissues.  相似文献   

6.
Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent.  相似文献   

7.
We developed a reproducible, noncovalent strategy to functionalize multiwalled carbon nanotubes (MWNTs) via embedding nanotubes in polysiloxane shells. (3-Aminopropyl)triethoxysilane molecules adsorbed to the nanotube surfaces via hydrophobic interactions are polymerized simply by acid catalysis and form a thin polysiloxane layer. On the basis of the embedded MWNTs, negatively charged gold nanoparticles are anchored to the nanotube surfaces via electrostatic interactions between the protonated amino groups and the gold nanoparticles. Furthermore, these gold nanoparticles can further grow and magnify along the nanotubes through heating in HAuCl4 aqueous solution at 100 degrees C; as a result these nanoparticles are joined to form continuous gold nanowires with MWNTs acting as templates.  相似文献   

8.
In this study, multifunctional nanoparticles containing thermosensitive polymers grafted onto the surfaces of 6-nm monodisperse Fe(3)O(4) magnetic nanoparticles coated by silica were synthesized using reverse microemulsions and free radical polymerization. The magnetic properties of SiO(2)/Fe(3)O(4) nanoparticles show superparamagnetic behavior. Thermosensitive PNIPAM (poly(N-isopropylacrylamide)) was then grafted onto the surfaces of SiO(2)/Fe(3)O(4) nanoparticles, generating thermosensitive and magnetic properties of nanocomposites. The sizes of fabricated nanoparticles with core-shell structure are controlled at about 30 nm and each nanoparticle contains only one monodisperse Fe(3)O(4) core. For thermosensitivity analysis, the phase transition temperatures of multifunctional nanoparticles measured using DSC was at around 34-36 degrees C. The magnetic characteristics of these multifunctional nanoparticles were also superparamagnetic.  相似文献   

9.
Uniform Fe3O4 nanospheres with a diameter of 100 nm were rapidly prepared using a microwave solvothermal method. Then Fe304/polypyrrole (PPy) composite nanospheres with well-defined core/shell structures were obtained through chemical oxidative polymerization of pyrrole in the presence of Fe3O4; the average thickness of the coating shell was about 25 nm. Furthermore, by means of electrostatic interactions, plentiful gold nanoparticles with a diameter of 15 nm were assembled on the surface of Fe3O4/PPy to get Fe3O4/PPy/Au core/shell/shell structure. The morphology, structure, and composition of the products were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), X-ray powder diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The resultant nanocomposites not only have the magnetism of Fe3O4 nanoparticles that make the nanocomposites easily controlled by an external magnetic field but also have the good conductivity and excellent electrochemical and catalytic properties of PPy and Au nanoparticles. Furthermore, the nanocomposites showed excellent electrocatalytic activities to biospecies such as ascorbic acid (AA).  相似文献   

10.
荧光磁性双功能树状分子微球的制备与表征   总被引:1,自引:0,他引:1  
采用化学共沉淀法, 以FeCl3·6H2O和FeSO4·7H2O为原料制备了磁性Fe3O4纳米颗粒, 采用树状大分子对其进行修饰, 然后通过树状大分子具有的大量空腔及末端丰富的氨基, 经吸附、 键合, 与大量巯基乙酸修饰的CdSe/CdS量子点连接, 得到三代具有荧光磁性双功能的树状分子微球, 并对其进行结构表征与性能测试. 结果表明: 三代复合后的微球的平均粒径分别为15, 34和49 nm; 一代荧光磁性微球的发光性能最佳, 其量子产率达24.1%; 零代荧光磁性微球磁性能最优, 其饱和磁化强度为15.96 A·m2/kg. 这种具有荧光和磁性的双功能纳米复合微粒有望在免疫检测、 靶向治疗、 荧光追踪和磁性分离等方面得到广泛应用.  相似文献   

11.
提出了一种简便易行的对磁性纳米粒子表面进行氨基化的方法.首先使用化学共沉淀法合成了粒径为10 nm左右的Fe_3O_4纳米粒子,然后用阿仑膦酸钠对其表面进行修饰,使其表面具有了功能化的氨基.利用透射电子显微镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、动态光散射(DLS)仪、热重分析(TGA)仪、傅里叶变换红外(FT-IR)光谱仪、X射线光电子能谱(XPS)仪等对其进行表征.结果显示磁性纳米粒子表面被成功地修饰了一层双膦酸分子.所制备的纳米粒子可在pH=6.3稳定存在4周以上.  相似文献   

12.
Heterostructured magnetic nanotubes   总被引:1,自引:0,他引:1  
Heterostructured magnetic tubes with submicrometer dimensions were assembled by the layer-by-layer deposition of polyelectrolytes and nanoparticles in the pores of track-etched polycarbonate membranes. Multilayers composed of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at high pH (pH > 9.0) were first assembled into the pores of track-etched polycarbonate membranes, and then multilayers of magnetite (Fe3O4) nanoparticles and PAH were deposited. Transmission electron microscopy (TEM) confirmed the formation of multilayer nanotubes with an inner shell of magnetite nanoparticles. These tubes exhibited superparamagnetic characteristics at room temperature (300 K) as determined by a SQUID magnetometer. The surface of the magnetic nanotubes could be further functionalized by adsorbing poly(ethylene oxide)-b-poly(methacrylic acid) block copolymers. The separation and release behavior of low molecular weight anionic molecules (i.e., ibuprofen, rose bengal, and acid red 8) by/from the multilayer nanotubes were studied because these tubes could potentially be used as separation or targeted delivery vehicles. The magnetic tubes could be successfully used to separate (or remove) a high concentration of dye molecules (i.e., rose bengal) from solution by activating the nanotubes in acidic solution. The release of the anionic molecules in physiologically relevant buffer solution showed that whereas bulky molecules (e.g., rose bengal) release slowly, small molecules (i.e., ibuprofen) release rapidly from the multilayers. The combination of the template method and layer-by-layer deposition of polyelectrolytes and nanoparticles provides a versatile means to create functional nanotubes with heterostructures that can be used for separation as well as targeted delivery.  相似文献   

13.
Fe3O4纳米粒子与正离子性的重氮树脂在硅基底的表面形成稳定自组装膜,还原后可通过化学气相沉积(CVD)法在硅基底的表面生长多壁碳纳米管.以聚丙烯酸包裹Fe3O4纳米颗粒能够有效地防止纳米粒子的团聚,并提高组装效率,得到均匀的纳米粒子自组装膜,从而获得在硅基底上均匀分布的多壁碳纳米管.  相似文献   

14.
The in situ ATRP (atom transfer radical polymerization) "grafting from" approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT). The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA to preliminarily functionalized MWNT (MWNT-Br). The resulting MWNT-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM, and TGA. Moreover, the approach has been extended to the copolymerization system, affording novel hybrid core-shell nanoobjects with MWNT as the core and amphiphilic poly(methyl methacrylate)-block-poly(hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel carbon nanotubes-based nanomaterials and molecular devices with tailor-made structure, architecture, and properties.  相似文献   

15.
在以共沉淀法制备的磁性纳米Fe3O4粒子(Magnetic nanoparticles, MNP)表面进行了化学修饰, 制备了一种新型富含羧基功能团的核壳磁性纳米吸附剂(Carboxylic functionalized Fe3O4 magnetic nanoparticles, CMNP). 利用透射电子显微镜(TEM)、 X射线衍射仪(XRD)、 X射线能量色散谱(EDS)、 振动样品磁强计(VSM)、 傅里叶变换红外光谱(FIIR)和热重分析仪(TGA)对CMNP的形貌、 结构、 化学组成和磁性能进行了表征, 并考察了吸附剂对Cu2+的吸附性能, 研究了溶液pH值、 吸附时间和Cu2+初始浓度对吸附性能的影响. 结果表明, 羧基化核壳磁性纳米Fe3O4颗粒的平均粒径为15 nm, 具有良好的超顺磁性, 饱和磁化强度为41.84 A·m2/kg, 在10 min中内可达到吸附平衡, 在pH=7.0时吸附量最高, 吸附等温数据符合Langmuir模型, 饱和吸附量qm= 43.48 mg/g.  相似文献   

16.
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (MPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium–tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet–visible–near-infrared spectroscopy (UV–vis–NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV–vis–NIR. SEM provides the morphology of the multilayer films. The PtNPs containing multilayer films exhibit high electrocatalytic activity for the reduction of dioxygen. Furthermore, the electrocatalytic activity of the films could be further tailored by simply choosing different cycles in the LBL process. This assembling method for polyelectrolyte functionalized carbon nanotubes and nanoparticles introduces new opportunities for the incorporation of various functionalities into nanotube devices, which, in turn, opens up the possibility of building more complex multicomponent nanostructures.  相似文献   

17.
We report the synthesis and characterization of a group of carboxyl-functionalized poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) that were used for the stabilization of superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles (NPs). Folic acid (FA) molecules were conjugated onto the dendrimer surfaces in an attempt to achieve specific targeted imaging of tumor cells that overexpress FA receptors using dendrimer-stabilized Fe(3)O(4) NPs. Fe(3)O(4) NPs were synthesized using controlled co-precipitation of Fe(ii) and Fe(iii) ions and the formed dendrimer-stabilized Fe(3)O(4) NPs were characterized using transmission electron microscopy (TEM) and polyacrylamide gel electrophoresis (PAGE). The intracellular uptake of dendrimer-stabilized Fe(3)O(4) NPs was tested in vitro using KB cells (a human epithelial carcinoma cell line) that overexpress FA receptors. It appears that carboxyl-terminated PAMAM dendrimer-stabilized Fe(3)O(4) NPs can be uptaken by KB cells regardless of the repelling force between the negatively charged cells and the negatively charged particles. In the presence of a large amount of carboxyl terminal groups on the dendrimer surface, the receptor-mediated endocytosis of Fe(3)O(4) NPs stabilized by FA-modified dendrimers was not facilitated. It implies that the surface charge of dendrimer-stabilized magnetic iron oxide NPs in biological medium is an important factor influencing their biological performance.  相似文献   

18.
A magnetic composite of multiwalls carbon nanotubes (MWNTs) decorated with iron oxide nanoparticles was synthesized successfully by a simple and effective chemistry precipitation method. The composite was characterized by X-ray diffraction analysis (XRD), Mössbauer spectrum (MS), transmission electron microscopy (TEM), and Fourier transform spectroscopy (FTIR) techniques. The patterns of XRD and MS indicated that MWNTs, γ-Fe2O3, and Fe3O4 coexisted in the composite. The TEM observation indicated that the nanoparticles of iron oxide were attached on the surface of the MWNTs, and the sizes of the particles ranged from 25 to 80 nm. FTIR spectra showed that SO4 functional groups existed on the surface of MWNTs after modification by sodium dodecylbenzene sulfonic acid (SDBS), which could immobilize Fe3+ ions onto the MWNTs. The hysteresis loops of the MWNTs and decorated MWNTs were measured by vibrating sample magnetometer (VSM), and the results showed that the composite was ferromagnetism with the saturated magnetization of 20.07 emu/g, and the coercive of 163.44 Oe.  相似文献   

19.
An in situ polycondensation approach was applied to functionalize multiwalled carbon nanotubes (MWNTs), resulting in various linear or hyperbranched polycondensed polymers [e.g., polyureas, polyurethanes, and poly(urea-urethane)-bonded carbon nanotubes]. The quantity of the grafted polymer can be easily controlled by the feed ratio of monomers. As a typical example, the polyurea-functionalized MWNTs were measured and characterized in detail. The oxidized MWNTs (MWNT-COOH) were converted into acyl chloride-functionalized MWNTs (MWNT-COCl) by reaction with neat thionyl chloride (SOCl2). MWNT-COCl was reacted with excess 1,6-diaminohexane, affording amino-functionalized MWNTs (MWNT-NH2). In the presence of MWNT-NH2, the polyurea was covalently coated onto the surfaces of the nanotube by in situ polycondensation of diisocyanate [e.g., 4,4'-methylenebis(phenylisocyanate)] and 1,6-diaminohexane, followed by the removal of free polymer via repeated filtering and solvent washing. The coated polyurea content can be controlled to some extent by adjusting the feed ratio of the isocyanato and amino groups. The structure and morphology of the resulting nanocomposites were characterized by FTIR, NMR, Raman, confocal Raman, TEM, EDS, and SEM measurements. The polyurea-coated MWNTs showed interesting self-assembled flat- or flowerlike morphologies in the solid state. The signals corresponding to that of the D and G bands of the carbon nanotubes were strongly attenuated after polyurea was chemically tethered to the MWNT surfaces. Comparative experiments showed that the grafted polymer species and structures have a strong effect on the Raman signals of polymer-functionalized MWNTs.  相似文献   

20.
提出了一种简便易行的对磁性纳米粒子表面进行氨基化的方法. 首先使用化学共沉淀法合成了粒径为10 nm左右的Fe3O4纳米粒子, 然后用阿仑膦酸钠对其表面进行修饰, 使其表面具有了功能化的氨基. 利用透射电子显微镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、动态光散射(DLS)仪、热重分析(TGA)仪、傅里叶变换红外(FT-IR)光谱仪、X射线光电子能谱(XPS)仪等对其进行表征. 结果显示磁性纳米粒子表面被成功地修饰了一层双膦酸分子. 所制备的纳米粒子可在pH=6.3稳定存在4周以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号