首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study on operation performance of photovoltaic–thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic–thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic–thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 °C. These results indicate that the photovoltaic–thermal solar heat pump air-conditioning system has better performances and can stably work.  相似文献   

2.
The heavy-duty machine tool is usually assumed in the concrete foundation, in which the machine tool-foundation joints have a critical effect on the working accuracy and life of heavy-duty machine tool. This paper proposed a novel contact stiffness model of concrete–steel joint based on the fractal theory. The topography of contact surface exist in concrete–steel joint has a fractal feature and can be described by fractal parameters. Asperities are considered as elastic, plastic deformation in micro-scale. However, the asperities of concrete surface will be crushed when the stress is larger than their yield limit. Then, the force balance of contact surfaces will be broken. Here, an iteration model is proposed to describe the contact state of concrete–steel joint. Because the contact asperities cover a very small proportion (less than 1%), the load on crushed asperities is assumed carried by other no contact asperities. This process will be repeated again and again until the crushed asperities are not being produced under external load. After that, the real contact area, contact stiffness of the concrete–steel joint can be calculated by integrating the asperities of contact surfaces. Nonlinear relationships between contact stiffness and load, fractal roughness parameter G, fractal dimension D can be revealed based on the presented model. An experimental setup with concrete–steel test-specimens is designed to validate the proposed model. Results indicate that the theoretical vibration mode shapes agree well with the experimental variation mode shapes. The errors between theoretical and experimental natural frequencies are less than 4.18%. The presented model can be used to predict the contact stiffness of concrete–steel joint, which will provide a theoretical basis for optimizing the connection characteristic of machine tool-concrete foundation.  相似文献   

3.
This paper describes a detailed experimental study performed to investigate the flame propagation behaviour of premixed flames in micro-channels. A novel, modular, stackable micro-combustor was developed for this purpose. For a chosen planar channel geometry, the flow condition and the mixture equivalence ratio of premixed acetylene–air were varied to investigate various modes of operation. Three different modes of operation were observed; they were (i) stable periodic operation – consisting of ignition, flame propagation, flame extinction, and re-ignition, (ii) a-periodic operation, and (iii) anchored flame condition. The present work also aims to provide quantitative information on the dynamics of premixed acetylene–air flames propagating inside micro-channels. A novel measurement approach based on OH* chemiluminescence measurements employing a single photomultiplier unit was developed for this purpose. The data recorded were post processed using an in-house developed MATLAB code to evaluate the mean flame propagation speed measured between three different spatial locations along the length of the micro-channel. The results from the flame propagation speed measurements performed during ‘periodic’ mode of operation indicated that the flame travelled at higher propagation speed in the mid-length region of the channel compared to that at the initial entry point, suggesting flame acceleration. This flame acceleration could be attributed to a situation where the flame experienced different local equivalence ratio conditions at different upstream locations. The results suggest that after completion of a cycle of operation consisting of ignition, flame propagation and flame extinction, the fresh mixture that filled the channel was diluted with the exhaust gas from the previous cycle. This pocket of diluted mixture convected downstream with time, thus enabling the spatial variation in local equivalence ratio along the micro-channel.  相似文献   

4.
An experimental study is conducted to determine the detonation characteristics of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) particles dispersed in a gaseous fuel air mixture in a vertical detonation tube with an inner diameter of 200 mm and a height of 5400 mm. Experiments are performed in both ethylene–air mixtures and RDX–ethylene–air hybrid mixtures. The detonation front pressure and velocity are measured with six pressure transducers along the detonation tube. The results show that the addition of RDX assists 4.0 vol.% ethylene–air mixtures in achieving detonation. The detonation front pressure increases noticeably with dust concentration up to \(474\hbox { g/m}^{3}\) in the RDX–ethylene–air hybrid mixtures, but the velocity only increases slightly. The cellular structures of RDX–ethylene–air hybrid mixtures and ethylene–air mixtures were obtained with the use of smoked foils and exhibit irregular structures. It is found that the measured cell size has a U-shaped curve with respect to RDX concentration.  相似文献   

5.
6.
Liquid–liquid slug flow offers the unique characteristics of high heat and mass transfer combined with a narrow residence time distribution in continuous flow and has thus attracted considerable attention in the field of microfluidics. To exploit its advantages in the successful design and operation of micro-reactors, a precise understanding of the mass transfer processes is essential. In the present work, the role of the thin continuous liquid film formed on the capillary wall in mass transfer is investigated. Fluorescence microscopy is used to determine the exchange between wall film and continuous phase segments to determine if the film is continuously renewed and can therefore be considered to contribute interfacial area available for mass transfer. The distinct wetting properties of different capillary materials are utilized in the experimental set-up to achieve a reproducible and non-invasive release of tracer. The degree of wall film mass transfer as a function of velocity, interfacial area and wall-film thickness is established.  相似文献   

7.
The heat transfer characteristics of the condensation of ethanol–water binary vapor on vertical tubes with the pipe diameter of 10 mm were investigated experimentally. The results showed that, with the change of the vapor-to-surface temperature difference, the condensation heat transfer coefficients revealed nonlinear characteristics with peak values under a wide variety of operating conditions. With the increasing pressure or velocity of the vapor, the heat transfer coefficients increased subsequently. The effect of vapor pressure or velocity on heat transfer coefficients reduced with the increasing ethanol mass fraction. It was noteworthy that, under low ethanol mass fractions (0.5–2%), the heat transfer coefficients augmented significantly, were about 5–8 times greater than that of pure steam. The comparison for different test blocks indicated that the condensation heat transfer coefficients for different pipe diameters were about the same value under the same operating condition. Significant heat transfer enhancement by Marangoni condensation could be achieved for full range of pipe diameter used in industrial condensers.  相似文献   

8.
The tensile stress–stretch behavior of an ethylene–propylene–diene terpolymer (EPDM) was experimentally investigated, both in a quasi-static stretching rate range (<0.4/s) with a conventional material test machine and in a dynamic stretching rate range (2800/s–3200/s) with a split Hopkinson tension bar (SHTB) technique. Experimental data were then analyzed using the Ogden and Roxburgh’s idealized Mullins effect modeling theory. Results show that the stress–stretch behavior is significantly dependent on stretching rate and the Mullins effect exists under dynamic loading. Furthermore, stretching rate only affects the material properties. The degree of damage in a stretched specimen is a function of only the maximum stretch ratio the specimen experienced.  相似文献   

9.
Fluid–Structure Interaction (FSI) in pipes can significantly affect pressure fluctuations during water hammer event. In transmission pipelines, anchors with axial stops have an important role in the waterhammer-induced FSI as they can suppress or allow the propagation of additional stress waves in the pipe wall. More specifically, a reduction in the number of axial stops and/or their stiffness causes significant oscillations in the observed pressure signal due to the enhancement of Poisson’s coupling. To confirm these physical arguments, this research conducts experimental investigations and then processes the collected pressure signals. The laboratory tests were run on an anchored pipeline with multiple axial supports which some of them removed at some sections to emerge Poisson’s coupling. The collected pressure signals are analyzed in the time and frequency domain in order to decipher fluctuations that stem from Poisson coupling and other anchors effects. The analysis of the laboratory data reveals that the pattern of the time signals of pressure is primarily affected by the stiffness and location of the supports. Likewise, the properties of structural boundaries characterize the frequency spectrum of the transient pressures, which is manifested by altering the amplitudes corresponding to dominant frequencies of the system. The study is of particular importance in practice of transient based defect detections and pipe system design.  相似文献   

10.
Experimental Techniques - Rolling of high gears into full material is a new and economic way of manufacturing. Such gearings provide a higher surface strength and a better surface quality than...  相似文献   

11.
12.
13.
Wang  Xiaochao  Lu  Zhenggang  Wen  Jingcheng  Wei  Juyao  Wang  Zehan 《Nonlinear dynamics》2022,108(3):2075-2096
Nonlinear Dynamics - Stability and bifurcation analysis of a non-rigid robotic arm controlled with a time-delayed acceleration feedback loop is addressed in this work. The study aims at revealing...  相似文献   

14.
The unloading process of an elastic–plastic spherical contact under stick contact condition is analyzed for various material properties. The evolution of normal and shear stress distribution at the contact area as well as the residual profile of the sphere and residual von Mises stresses inside the sphere are presented. Empirical expressions for the residual interference and for the evolution of the interference and contact area during the unloading are provided. Good agreement with experimental results is shown.  相似文献   

15.
16.
In this paper, condensation heat transfer characteristics of ethanol–water vapor mixtures on a vertical mini-vertical tube with 1.221 mm outside diameter were investigated experimentally. The experiments were performed at different velocities and pressures over a wide range of ethanol mass fractions in vapor. The test results indicated that, with respect to the change of the vapor-to-surface temperature difference, the condensation curves of the heat transfer coefficients revealed nonlinear characteristics, and had peak values. At 2 % ethanol mass fraction in vapor, the condensation heat transfer coefficient value of the ethanol–water vapor mixture was found to have a maximum heat transfer coefficient of 50 kW m?2 K?1, which was 3–4 times than that of pure steam. The condensation heat transfer coefficients decreased with increased ethanol mass fraction in vapor. The vapor pressure and vapor velocity had a positive effect on the condensation heat transfer coefficients of ethanol–water vapor mixtures.  相似文献   

17.
Despite the importance of air–oil slug flows to many industrial applications, their available data reported in the literature are limited compared to air–water slug flows. The main objective of the present study is to explain how air–oil slug flow parameters can be experimentally investigated using hot-film anemometry, capacitance sensors and image processing. Experiments were performed using air–oil slug flow through a horizontal pipe for air superficial velocities ranged from 0.01 m/s to 0.65 m/s and oil superficial velocities ranged from 0.03 m/s to 2.3 m/s. The signal obtained from the hot-film anemometer was used to determine the time-averaged local void fraction and liquid velocity and turbulence intensity for air–oil slug flow. The capacitance signals along with the data obtained by image processing of the flow were used to determine the elongated bubble length and velocity. The measurements techniques used found to describe in detail the internal structure of the slug flow. Finally, the experimental results were compared to existing models and correlations.  相似文献   

18.
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.  相似文献   

19.
A new experimental setup is developed to investigate the transverse mechanical properties of Kevlar® KM2 fibers, which has been widely used in ballistic impact applications. Experimental results for large deformation reveal that the Kevlar® KM2 fibers possess nonlinear, pseudo-elastic transverse mechanical properties. A phenomenon similar to the Mullins effect (stress softening) in rubbers exists for the Kevlar® KM2 fibers. Large transverse deformation does not significantly reduce the longitudinal tensile load-bearing capacity of the fibers. In addition, longitudinal tensile loads stiffen the fibers' transverse nominal stress–strain behaviors at large transverse deformation. Loading rates have insignificant effects on their transverse mechanical properties even in the finite deformation range. An analytical relationship between transverse compressive force and displacement is derived at infinitesimal strain level. This relation is used to estimate the transverse elastic modulus of the Kevlar® KM2 fibers, which is 1.34 ± 0.35 GPa.  相似文献   

20.
Fluid–structure interaction phenomena are extremely important when laminar flows through elastic vessels such as in biomedical flow problems are considered. In general, such elastic vessels are curved which is why an elastic 180° bend at a curvature ratio \(\delta = D/D_{\rm C} = 0.\bar{2}\) defines the reference geometry in this study. It is the purpose of this study to compare the results with the steady flow through a 180° rigid pipe bend and to quantify the impact of the fluid–structure interaction on the overall flow pattern and the vessel deformation at oscillating fully developed entrance flow. The findings comprise velocity, pressure, and structure deformation measurements. The vessel dilatation amplitude was varied between 3.75 % and 7 % of the vessel diameter at Dean De and Womersley number Wo ranges of \(327\,\le\,De\,\le\,350\) and \(7\,\le\,Wo\,\le\,8.\) The flow is investigated by time-resolved stereoscopic particle-image velocimetry in five radial cross sections located in the elastic 180° bend and in the inlet pipes. The unsteady static vessel pressure is measured synchronously at these cross sections. The comparison of the steady with the unsteady flow field shows a strong change in the axial and secondary velocity distributions at periods of transition between the centrifugal forces and the unsteady inertia forces dominated regimes. These changes are characterized by asymmetric fluctuations of the centers of the counter-rotating vortex pair. The investigation of the impact of the structure deformation amplitude on these fluctuations reveals a significant attenuation at high deformation amplitudes. The spatial motion of the elastic vessel due to the forces applied by the flow exhibits amplitudes up to 15 % of the vessel diameter. Considering the fluid–structure interaction, an amplification of the volume flux amplitude by a factor of 2.1 at the vessel outlet and phase lags up to 30° occur. The static pressure distribution is characterized by a pronounced asymmetry between forward and backward flow with a 40 % higher peak magnitude at backward flow and phase lags of 35°. The results evidence that a strong distortion of the velocity distribution in the bend, which is caused by the oscillating nature of the flow, is reduced as a result of the fluid–structure interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号