首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal components and orientations of the chemical shift anisotropy (CSA) tensors of the carbonyl (C'), nitrogen (N), and amide proton (H(N)) nuclei of 64 distinct amide bonds in human ubiquitin have been determined in isotropic solution by a set of 14 complementary auto- and cross-correlated relaxation rates involving the CSA interactions of the nuclei of interest and several dipole-dipole (DD) interactions. The CSA parameters thus obtained depend to some degree on the models used for local motions. Three cases have been considered: restricted isotropic diffusion, three-dimensional Gaussian axial fluctuations (3D-GAF), and independent out-of-plane motions of the NH(N) vectors with respect to the peptide planes.  相似文献   

2.
The N(alpha)-Fmoc-peptide isocyanates 3a-q, 4a-c, and 5a-c were prepared by the Curtius rearrangement of N(alpha)-Fmoc-peptide acid azides in toluene under thermal, microwave, and ultrasonic conditions. All the N(alpha)-Fmoc-oligo-peptide isocyanates made were isolated as stable crystalline solids with 71 to 94% yield and were fully characterized by 1H NMR, 13C NMR, and mass spectroscopy. Their utility for the synthesis of oligo-alpha-peptidyl ureas 7a-f and 8a-c by the divergent coupling approach was demonstrated. The coupling of N(alpha)-Fmoc-dipeptide isocyanates with amino acid ester or with N,O-bis(trimethylsilyl)amino acids resulted in N(alpha)-Fmoc-tripeptidyl urea ester and acids containing one each of peptide bond and urea bond. The divergent approach is extended to the synthesis of tetrapeptidyl ureas by the 2 + 2 strategy using bis-TMS-peptide acid as an amino component. To incorporate urea bonds in adjacent positions, N(alpha)-Fmoc-peptidyl urea isocyanates 9a-d were prepared and employed in the synthesis of three tetrapeptidyl ureas 10a-b and 11 containing one peptide bond and two urea bonds in series from the N-terminal end. The protocol was then employed for the synthesis of five urea analogues 13-15, 18, and 21 of [Leu5]enkephalin containing urea bonds at the 2, 3, 4 positions as well as at the 2, 4 and 2, 3, 4 positions. The analogue 2l was made by the convergent synthesis by the N --> C terminal chain extension. Finally, two urea analogues 22 and 23 of repeat units of bioelasto polymers, namely Val-Pro-Gly-Val-Gly-OH and Pro-Gly-Val-Gly-Val-OH, were synthesized incorporating the urea bond by the concomitant isocyanate generation and urea bond formation under thermal conditions.  相似文献   

3.
Knowledge of chemical shift-structure relationships could greatly facilitate the NMR chemical shift assignment and structure refinement processes that occur during peptide/protein structure determination via NMR spectroscopy. To determine whether such correlations exist for polar side chain containing amino acid residues the serine dipeptide model, For-L-Ser-NH(2), was studied. Using the GIAO-RHF/6-31+G(d) and GIAO-RHF/TZ2P levels of theory the NMR chemical shifts of all hydrogen ((1)H(N), (1)H(alpha), (1)H(beta1), (1)H(beta2)), carbon ((13)C(alpha), (13)C(beta), (13)C') and nitrogen ((15)N) atoms have been computed for all 44 stable conformers of For-L-Ser-NH(2). An attempt was made to establish correlation between chemical shift of each nucleus and the major conformational variables (omega(0), phi, psi, omega(1), chi,(1) and chi(2)). At both levels of theory a linear correlation can be observed between (1)H(alpha)/phi, (13)C(alpha)/phi, and (13)C(alpha)/psi. These results indicate that the backbone and side-chain structures of For-L-Ser-NH(2) have a strong influence on its chemical shifts.  相似文献   

4.
Residual dipolar couplings (RDCs) observed by NMR in solution under weak alignment conditions can monitor average net orientations and order parameters of individual bonds. By their simple geometrical dependence, RDCs bear particular promise for the quantitative characterization of conformations in partially folded or unfolded proteins. We have systematically investigated the influence of amino acid substitutions X on the conformation of unfolded model peptides EGAAXAASS as monitored by their (1)H(Nu)-(15)N and (1)H(alpha)-(13)C(alpha) RDCs detected at natural abundance of (15)N and (13)C in strained polyacrylamide gels. In total, 14 single amino acid substitutions were investigated. The RDCs show a specific dependence on the substitution X that correlates to steric or hydrophobic interactions with adjacent amino acids. In particular, the RDCs for the glycine and proline substitutions indicate less or more order, respectively, than the other amino acids. The RDCs for aromatic substitutions tryptophane and tyrosine give evidence of a kink in the peptide backbone. This effect is also observable for orientation by Pf1 phages and corroborated by variations in (13)C(alpha) secondary shifts and (3)J(HNH)(alpha) scalar couplings in isotropic samples. RDCs for a substitution with the beta-turn sequence KNGE differ from single amino acid substitutions. Terminal effects and next neighbor effects could be demonstrated by further specific substitutions. The results were compared to statistical models of unfolded peptide conformations derived from PDB coil subsets, which reproduce overall trends for (1)H(Nu)-(15)N RDCs for most substitutions, but deviate more strongly for (1)H(alpha)-(13)C(alpha) RDCs. The outlined approach opens the possibility to obtain a systematic experimental characterization of the influence of individual amino acid/amino acid interactions on orientational preferences in polypeptides.  相似文献   

5.
In the title compound, C4H6N4S·0.5H2O, there are two independent pyrimidinethione units, both of which lie across mirror planes in the space group Cmca. Hence, the H atoms bonded to the ring N atoms in each molecule are disordered over two symmetry‐related sites, each having an occupancy of 0.5. The water molecule lies across a twofold rotation axis parallel to [010]. The molecular components of (I) are linked by seven independent hydrogen bonds, of N—H...N, N—H...S, N—H...O and O—H...S types. A combination of disordered N—H...N hydrogen bonds and ordered N—H...S hydrogen bonds links the pyrimidinethione units into a continuous tubular structure. The water molecule acts as both a double donor of hydrogen bonds and a double acceptor, forming hydrogen bonds with components of four distinct pyrimidinethione tubes, thus linking these tubes into a three‐dimensional structure.  相似文献   

6.
7.
The ligated benzonitriles in the platinum(II) complex [PtCl2(PhCN)2] undergo metal-mediated [2 + 3] cycloaddition with nitrones -ON+(R3)=C(R1)(R2) [R1/R2/R3 = H/Ph/Me, H/p-MeC6H4/Me, H/Ph/CH2Ph] to give delta 4-1,2,4-oxadiazoline complexes, [PtCl2(N=C(Ph)O-N(R3)-C(R1)(R2))2] (2a, 4a, 6a), as a 1:1 mixture of two diastereoisomers, in 60-75% yields, while [PtCl2(MeCN)2] is inactive toward the addition. However, a strong activation of acetonitrile was reached by application of the platinum(IV) complex [PtCl4(MeCN)2] and both [PtCl4(RCN)2] (R = Me, Ph) react smoothly with various nitrones to give [PtCl4(N=C(R)O-N(R3)-C(R1)(R2))2] (1b-6b). The latter were reduced to the corresponding platinum(II) complexes [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) by treatment with PhCH2NHOH, while the reverse reaction, i.e. conversion of 1a-6a to 1b-6b, was achieved by chlorination with Cl2. The diastereoisomers of [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) exhibit different kinetic labilities, and liberation of the delta 4-1,2,4-oxadiazolines by substitution with 1,2-bis(diphenylphosphino)ethane (dppe) in CDCl3 proceeds at different reaction rates to give free N=C(R)O-N(R3)-C(R1)(R2) and [PtCl2(dppe)] in almost quantitative NMR yield. All prepared compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and 1H, 13C(1H), and 195Pt (metal complexes) NMR spectroscopies; X-ray structure determination of the first (delta 4-1,2,4-oxadiazoline)Pt(II) complexes was performed for (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)Ph)2] (1a) (a = 9.3562(4), b = 9.8046(3), c = 13.1146(5) A; alpha = 76.155(2), beta = 83.421(2), gamma = 73.285(2) degrees; V = 1117.39(7) A3; triclinic, P1, Z = 2), (R,S)-meso-[PtCl2(N=C(Ph)O-N(Me)-C(H)Ph)2] (2a) (a = 8.9689(9), b = 9.1365(5), c = 10.1846(10) A; alpha = 64.328(6), beta = 72.532(4), gamma = 67.744(6) degrees; V = 686.82(11) A3; triclinic, P1, Z = 1), (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)(p-C6H4Me))2] (3a) (a = 11.6378(2), b = 19.0767(7), c = 11.5782(4) A; beta = 111.062(2) degrees; V = 2398.76(13) A3; monoclinic, P2(1)/c, Z = 4), and (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(CH2Ph)-C(H)Ph2] (5a) (a = 10.664(2), b = 10.879(2), c = 14.388(3) A; alpha = 73.11(3), beta = 78.30(3), gamma = 88.88(3) degrees; V = 1562.6(6) A3; triclinic, P1, Z = 2).  相似文献   

8.
The sterically hindered, three-coordinate metal systems M[N(R)Ar]3 (R = tBu, iPr; Ar = 3,5-C6H3Me2) are known to bind and activate a number of fundamental diatomic molecules via a [Ar(R)N]3M-L-L-M[N(R)Ar]3 dimer intermediate. To predict which metals are most suitable for activating and cleaving small molecules such as N(2), NO, CO, and CN(-), the M-L bond energies in the L-M(NH2)3 (L = O, N, C) model complexes were calculated for a wide range of metals, oxidation states, and dn (n = 2-6) configurations. The strongest M-O, M-N, and M-C bonds occurred for the d2, d3, and d4 metals, respectively, and for these d(n) configurations, the M-C and M-O bonds were calculated to be stronger than the M-N bonds. For isoelectronic metals, the bond strengths were found to increase both down a group and to the left of a period. Both the calculated N-N bond lengths and activation barriers for N2 bond cleavage in the (H2N)3M-N-N-M(NH2)3 intermediate dimers were shown to follow the trends in the M-N bond energies. The three-coordinate complexes of Ta(II), W(III), and Nb(II) are predicted to deliver more favorable N2 cleavage reactions than the experimentally known Mo(III) system and the Re(III)Ta(III) dimer, [Ar(R)N]3Re-CO-Ta[N(R)Ar]3, is thermodynamically best suited for cleaving CO.  相似文献   

9.
The longitudinal linear polarizability alpha(N) of a stereoregular oligomer of size N is proportional to N in the large-N limit, provided the system is nonconducting in that limit. It has long been known that the convergence of alpha(N)/N to the asymptotic alpha(infinity) value is slow. We show that the leading term in the difference between alpha(N)/N and alpha(infinity) is of the order of 1/N. The difference [alpha(N)-alpha(N-1)], as well as alpha(center)(N) (when computationally accessible), also converge to alpha(infinity), but faster, the leading term being of the order of 1/N(2). We also present evidence that in these cases the power law convergence behavior is due to quasi-one-dimensional electrostatics, with one exception. Specifically, in molecular systems the difference between alpha(N)/N and alpha(infinity) has not just one but two sources of the O(1/N) term, with one being due to the aforementioned Coulomb interactions, and the second due to the short ranged exponentially decaying perturbations on chain ends. The major role of electrostatics in the convergence of the remainders is demonstrated by means of a Clausius-Mossotti-type classical model. The conclusions derived from the model are also shown to be applicable in molecular systems, by means of test-case ab initio calculations on linear stacks of H(2) molecules, and on polyacetylene chains. The implications of the modern theory of polarization for extended systems are also discussed.  相似文献   

10.
Synthesis of selenoxo peptides by the treatment of N(α)-protected peptide esters with a combination of PCl(5) and LiAlHSeH is delineated. The method is simple, high-yielding, and free from racemization. Thus obtained selenoxo peptides are used as units for N-terminal chain extension through N(α)-deprotection/coupling to yield peptide-selenoxo peptide hybrids. Multiple selenation is demonstrated by conversion of two peptide bonds of tripeptides into selenoxo peptide bonds. Amino acid derived arylamides are also converted into aryl selenoamides. C(6)H(5)-CSeNH-Val-OMe 8f is obtained as single crystal, and its structure was determined through X-ray diffraction study.  相似文献   

11.
This paper reports the syntheses and structures of three new copper phosphonates based on 2-pyridylphosphonate, namely, Cu(C(5)H(4)NPO(3)H)2 (1), Cu3(OH)2(C(5)H(4)NPO(3))2.2H2O (2) and Cu(C(5)H(4)NPO(3)) (3). Compound 1 has a discrete dimeric structure in which the {CuO(4)N} square pyramids are linked by the {CPO(3)} tetrahedra through corner-sharing. The dimers are further connected into a chain through hydrogen bonds. In compound 2, edge-sharing {Cu(1)O(4)N} square pyramids and {Cu(2)O(4)} planes are found to form an infinite chain with composition {Cu(3)(mu-OH)(2)(mu-O)(4)}. Neighboring chains are linked by the phosphonate groups of the 2-pyridylphosphonate ligands, resulting in inorganic layers containing 4-, 8- and 12-membered rings. The pyridyl groups and the lattice water molecules occupy the inter-layer space. In compound 3, the {Cu(1)O(4)} and {Cu(2)O(2)N(2)} planes are each corner-shared with the {CPO(3)} tetrahedra, forming an inorganic layer containing 8- and 16-membered rings. The pyridyl groups reside between the layers. Crystal data for 1: space group P(-)1, a = 8.4045(19), b = 8.751(2), c = 10.632(2) A, alpha = 66.673(4), beta = 72.566(4), gamma = 70.690(4) degrees , V = 664.7(2) A(3), Z = 2. Crystal data for 2: space group P2(1)/c, a = 7.9544(17), b = 21.579(4), c = 5.0243(10) A, beta = 105.332(3) degrees , V = 831.7(3) A(3), Z = 2. Crystal data for 3: space group P2(1)/c, a = 4.7793(11), b = 15.319(3), c = 8.6022(19) A, beta = 97.156(4) degrees , V = 624.9(2) A(3), Z = 4. Magnetic measurements reveal that dominant antiferromagnetic interactions are propagated between the copper centers in compounds 1-3. For 3, spin canting is observed with a ferromagnetic transition occurring at 9 K.  相似文献   

12.
NMR measurements of a large set of protein backbone one-bond dipolar couplings have been carried out to refine the structure of the third IgG-binding domain of Protein G (GB3), previously solved by X-ray crystallography at a resolution of 1.1 A. Besides the commonly used bicelle, poly(ethylene glycol), and filamentous phage liquid crystalline media, dipolar couplings were also measured when the protein was aligned inside either positively or negatively charged stretched acrylamide gels. Refinement of the GB3 crystal structure against the (13)C(alpha)-(13)C' and (13)C'-(15)N dipolar couplings improves the agreement between experimental and predicted (15)N-(1)H(N) as well as (13)C(alpha)-(1)H(alpha) dipolar couplings. Evaluation of the peptide bond N-H orientations shows a weak anticorrelation between the deviation of the peptide bond torsion angle omega from 180 degrees and the angle between the N-H vector and the C'-N-C(alpha) plane. The slope of this correlation is -1, indicating that, on average, pyramidalization of the peptide N contributes to small deviations from peptide bond planarity ( = 179.3 +/- 3.1 degrees ) to the same degree as true twisting around the C'-N bond. Although hydrogens are commonly built onto crystal structures assuming the N-H vector orientation falls on the line bisecting the C'-N-C(alpha) angle, a better approximation adjusts the C(alpha)-C'-N-H torsion angle to -2 degrees. The (15)N-(1)H(N) dipolar data do not contradict the commonly accepted motional model where angular fluctuations of the N-H bond orthogonal to the peptide plane are larger than in-plane motions, but the amplitude of angular fluctuations orthogonal the C(alpha)(i-1)-N(i)-C(alpha)(i) plane exceeds that of in-plane motions by at most 10-15 degrees. Dipolar coupling analysis indicates that for most of the GB3 backbone, the amide order parameters, S, are highly homogeneous and vary by less than +/-7%. Evaluation of the H(alpha) proton positions indicates that the average C(alpha)-H(alpha) vector orientation deviates by less than 1 degrees from the direction that makes ideal tetrahedral angles with the C(alpha)-C(beta) and C(alpha)-N vectors.  相似文献   

13.
Dissociations of aminoketyl radicals and cation radicals derived from beta-alanine N-methylamide, N-acetyl-1,2-diaminoethane, N(alpha)-acetyl lysine amide, and N(alpha)-glycyl glycine amide are investigated by combined density functional theory and M?ller-Plesset perturbational calculations with the goal of elucidating the mechanism of electron capture dissociation (ECD) of larger peptide and protein ions. The activation energies for dissociations of N[bond]C bonds in aminoketyl radicals decrease in the series N[bond]CH(3) > N-CH(2)CH(2)NH(2) > N[bond]CH(2)CONH(2) approximately N[bond]CH(CONH(2))(CH(2))(4)NH(2). Transition state theory rate constants for dissociations of N[bond]C(alpha) bonds in aminoketyl radicals and cation-radicals indicate an extremely facile reaction that occurs with unimolecular rate constants >10(5) s(-1) in species thermalized at 298 K in the gas phase. In neutral aminoketyl radicals the N[bond]C(alpha) bond cleavage results in fast dissociation. In contrast, N[bond]C(alpha) bond cleavage in aminoketyl cation-radicals results in isomerization to ion-molecule complexes that are held together by strong hydrogen bonds. The facile N[bond]C(alpha) bond dissociation in thermalized ions indicates that it is unnecessary to invoke the hypothesis of non-ergodic behavior for ECD intermediates.  相似文献   

14.
1 INTRODUCTION Triazole nuclei appear frequently in the structures of various natural products and biologically active compounds, notably thiamine (vitamin B), peni- cillins, antibiotics such as micrococcin[1], and many metabolic products of fungi and p…  相似文献   

15.
1 INTRODUCTION Benzimidazole is an interesting heterocyclic ring because it is present in various naturally occurring drugs, such as omeprazole, astemizole and emedastine difumarate[1]. The efficacy of substituted benzimidazoles in the treatment of parasitic infections is well known[2~4], and the pharmacophores in parasitic chemotherapy are established by benzimidazole-substituted moieties. Bis(2-benzimidazoles) and some substituted bis- (benzimi-dazol-2-yl) alkanes have attracted much…  相似文献   

16.
Rotating-frame relaxation rates, R(1)(rho), are often measured in NMR studies of protein dynamics. We show here that large systematic errors can be introduced into measured values of heteronuclear R(1)(rho) rates using schemes which are usually employed to suppress cross-correlation between dipole-dipole and CSA relaxation mechanisms. For example, in a scalar-coupled two-spin X-H spin system the use of (1)H WALTZ16 decoupling or (1)H pulses applied at regularly spaced intervals leads to a significant overestimation of heteronuclear R(1)(rho) values. The problem is studied experimentally and theoretically for (15)N-(1)H and (13)C-(1)H spin pairs, and simple schemes are described which eliminate the artifacts. The approaches suggested are essential replacements of existing methodology if accurate dynamics parameters are to be extracted from spin-lock relaxation data sets.  相似文献   

17.
以2-碳基丙酸水杨酰腙、咪唑与五水硫酸铜在水中反应,首次制得混配体配合 物Cu(C10H8N2O4)(C3H4N2)(H2O)[C10H8N2O4^2-为2-羰基丙酸水杨酰腙负离子 ;C3H4N2为咪唑],并在甲醇溶剂中培养出单晶.该单晶为深绿色,属单斜晶系, 空间群为P2(1)/c,晶胞参数a=1.50583(5)nm,b=1.08411(3)nm,c=0.94366(2)nm, α=90°,β=101.5583(11)°,γ=90°,V=1.50927(7)nm^3,Z=4,μ=1.479mm^-1, Dc=1.628Mg/m^3,F(000)=756.00,R=0.0340,ωR=0.0777,GOF=1.025。晶体测试结果 表明,配合物中Cu(Ⅱ)的配位数为5,处于四方锥配位环境,其中配体2—羰基丙酸 水杨酰腙的羧基以单齿配位.腙基上C≡N的N配位以及碳基(C≡0)的0配位,咪唑的 3位N参与了配位,这四个配位原子处于四方锥的锥底,另一个配位原子来自H20中 的0,它处于四方锥的锥顶.在晶胞中,除分子内存在氢键外,分子间也存在氢键 .根据TG-DTG曲线研究了配合物的热分解过程,利用Kissinger公式计算了配合物 主要分解阶段的表观活化能.  相似文献   

18.
A series of lanthanide complexes containing a chalcogenolate ligand supported by two TpMe,Me (tris-3,5-dimethylpyrazolylborate) groups has been prepared and crystallized and provides direct comparisons of bonding to hard and soft ligands at lanthanide centers. Reaction of [Sm(TpMe,Me)2Cl] with NaOR (R = Ph, Ph-Bu(t)) gives [Sm(TpMe,Me)2OR] (1a and 1b, respectively) in good yields. Reductive cleavage of dichalcogenides by samarium(II) was used to prepare the heavier congeners. Complexes of the type [Sm(TpMe,Me)2ER] for E = S, R = Ph (2a), E = S, R = Ph-4-Me (2b), E = S, R = CH2Ph (2c), E = Se, R = Ph (3a), E = Se, R = Ph-4-Bu(t) (3b), E = Se, R = CH2Ph (3c), and E = Te, R = Ph (4) have been prepared together with the corresponding complexes with TpMe,Me,4-Et as ancillary. The X-ray crystal structures of 1b, 2b, 3a, 3b, and 4 have been determined. The crystal of 1b (C40H57B2N12OSm.C7H8) was monoclinic, P2(1)/c, a = 10.6845(6) A, b = 18.5573(11) A, c = 24.4075(14) A, beta = 91.616(2) degrees, Z = 4. The crystal of 2b (C37H51B2N12SSm) was monoclinic, P2(1)/n, a = 15.0154(9) A, b = 13.1853(8) A, c = 21.1254(13) A, beta = 108.628(2) degrees, Z = 4. The crystal of 3a (C36H49B2N12SeSm.C7H8) was triclinic, P1, a = 10.7819(6) A, b = 19.3011(10) A, c = 23.0235(12) A, alpha = 79.443(2) degrees, beta = 77.428(2) degrees, gamma = 89.827(2) degrees, Z = 4. The crystal of 3b (C40H57B2N12SeSm) was triclinic, P1, a = 10.1801(6) A, b = 10.2622(6) A, c = 23.4367(14) A, alpha = 88.313(2) degrees, beta = 86.268(2) degrees, gamma = 62.503(2) degrees, Z = 2. The crystal of 4 (C36H49B2N12TeSm.C7H8) was monoclinic, P2(1)/c, a = 18.7440(10) A, b = 10.3892(6) A, c = 23.8351(13) A, beta = 94.854(2) degrees, Z = 4. The compounds form an isoleptic series of seven-coordinate complexes with terminal chalcogenolate ligands. Examination of 1b and other crystallographically characterized lanthanide alkoxides suggests that there is little correlation between bond angle and bond length. The structures of 3a and 3b, however, contain molecules in which one of the pyrazolylborate ligands undergoes a major distortion arising from twisting around a B-N bond so as to give an effectively eight-coordinate complex with pi-stacking of the phenyl group with one pyrazolyl ring. These distortions shed light on the fluxionality of these systems.  相似文献   

19.
Ti-Si介孔分子筛的转晶与控制   总被引:6,自引:0,他引:6  
以季铵盐型阳离子Gemini表面活性剂[C16H33(CH3)2N+(CH2)6N+(CH3)2C16H33]•2Br−(GEM16-6-16)为模板剂, 改变n(Ti)/n(Si)比值, 合成了系列Ti-Si介孔分子筛. X射线衍射(XRD)和透射电子显微镜(TEM)等表征结果表明, 在n(Ti)/n(Si)≤0.20时, 分子筛为高度有序六方介孔; 当 n(Ti)/n(Si)为 0.30时, 介孔转晶为立方相; 当n(Ti)/n(Si)为0.50时, 介孔转晶为层状相; n(Ti)/n(Si)为1.0时, 材料失去有序孔道结构. FT-IR分析表明, 在分子筛骨架间形成了Ti—O—Si键, 而且Ti—O—Si键的数目随n(Ti)/n(Si)的增加而增加, 达到一定饱和值后基本保持不变. 乙醇和丁醇对纯硅基介孔分子筛孔结构转晶控制作用呈现六方相→立方相→层状相递变规律, 因而钛酸正丁酯水解生成的丁醇对Ti-Si介孔分子筛转晶具有一定的控制作用.  相似文献   

20.
A potentiometric, spectroscopic (UV-Vis, CD and EPR) and mass spectrometric (ESI-MS) study of Cu(II) binding to the (1-2,7-21)NPG, Asp(1)-Ala-Ile(7)-Ser-His(9)-Lys-Arg-His(12)-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met(21)-NH(2), and Ac-(1-2,7-21)NPG, Ac-Asp(1)-Ala-Ile(7)-Ser-His(9)-Lys-Arg-His(12)-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met(21)-NH(2), fragments of neuropeptide gamma were carried out. The results clearly indicate the stabilization of the 1 N {NH(2), β-COO(-)}, 2 N {NH(2), β-COO(-), N(Im)} and 3 N {NH(2), β-COO(-), 2N(Im)} complexes by the coordination of the β-carboxylate group of the D(1) residue. For the (1-2,7-21)NPG the CuH(2)L complex with 3 N {NH(2), β-COO(-), 2N(Im)}, the binding mode dominates in a wide pH range of 4-8.5. With the sequential increase of pH, deprotonated amide nitrogens are involved in copper coordination. For the Ac-(1-2,7-21)NPG peptide the imidazole nitrogen atoms are the primary metal binding sites forming macrochelates in the pH range 4 to 7. The CuHL complex with 4 N {N(Im), N(-), N(-), N(Im)} coordination mode is formed in pH range 6-9. Deprotonation and co-ordination of the third amide nitrogen were detected at pH ~8.6. Metal-catalyzed oxidation (MCO) of proteins is mainly a site-specific process in which one or a few amino acids at metal-binding sites on the protein are preferentially oxidized. To elucidate the products of the copper(II)-catalyzed oxidation of the (1-2,7-21)NPG and Ac-(1-2,7-21)NPG, the liquid chromatography-mass spectrometry (LC-MS) method and Cu(II)/hydrogen peroxide as a model oxidizing system were employed. In the presence of hydrogen peroxide with 1?:?4 peptide-H(2)O(2) molar ratio for the Ac-(1-2,7-21)NPG peptide the oxidation of the methionine residue to methionine sulfoxide and for (1-2,7-21)NPG to sulfone was observed. For the Cu(II)-peptide-hydrogen peroxide in 1?:?1?:?4 molar ratio systems, oxidation of the histidine residues to 2-oxohistidines was detected. Under experimental conditions the (1-2,7-21)NPG and Ac-(1-2,7-21)NPG undergo fragmentations by cleavage of the S(8)-H(9), H(9)-K(10), R(11)-H(12) and H(12)-K(13) peptide bonds supporting the participation of the H(9) and H(12) residues in the coordination of copper(II) ions. For the (1-2,7-21)NPG peptide chain the involvement of the D(1) residue in the coordination of metal ions is supported by the alkoxyl radical modification of this amino acid residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号