首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a paper-based chemiluminescence (CL) test for the determination of mercury(II) ion. A single-stranded DNA aptamer was first covalently immobilized via its amino groups to the hydroxy groups on the surface of cellulosic paper. The aptamer probes can capture Hg(II) ions due to their specific interaction with thymine. The CL reagent (a caboxylated phenylene-ethynylene referred to as P-acid) was immobilized on nanoporous silver (NPS@P-acid) and used a CL label on the aptamer. The stripe is then contacted with a sample containing Hg(II) ions and CL is induced by the addition of permanganate. CL intensity depends on the concentration of Hg(II) because Hg(II) increases the quantity of the P-acid-conjugated aptamer. The highly active surface of the NPS@P-acid composites results in an 8-fold higher CL intensity compared to the use of pure P-acid. This enables Hg(II) ion to be quantified in the 20 nM to 0.5 μM concentration range, with a limit of detection as low as 1 pM. This CL aptasensor is deemed to represent a promising tool for simple, rapid, and sensitive detection of Hg(II).
Figure
?  相似文献   

2.
We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers.
Figure
A simple and sensitive fluorescent assay for oxytetracycline detection based on the different interaction intensity of fluorescein-labeled long-chain aptamer, G-quadruplex-OTC complex with reduced graphene oxide was designed.  相似文献   

3.
We explored a fluorescent strategy for sensing ochratoxin A (OTA) by using a single fluorophore-labeled aptamer for detection of OTA. This method relied on the change of the fluorescence intensity of the labeled dye induced by the specific binding of the fluorescent aptamer to OTA. Different fluorescein labeling sites of aptamers were screened, including the internal thymine bases, 3′-end, and 5′-end of the aptamer, and the effect of the labeling on the aptamer affinity was investigated. Some fluorophore-labeled aptamers showed a signal-on or signal-off response. With the fluorescent aptamer switch, simple, rapid, and selective sensing of OTA at nanomolar concentrations was achieved. OTA spiked in diluted red wine could be detected, showing the feasibility of the fluorescent aptamer for a complex matrix. This method shows potential for designing aptamer sensors for other targets.
Figure
A simple fluorescent approach for OTA sensing is achieved by using single fluorophore-labeled aptamer. A fluorophore is attached on one site of the aptamer. The affinity binding of OTA induces the alteration of fluorescence properties of the labeled fluorophore as the consequence of the conformation change of the aptamer. OTA can be detected by measuring the change of fluorescence signals of the labeled dye  相似文献   

4.
We have prepared an ~1.4 μm thin hybrid film from polyurethane (PU) hydrogel and tetraethylorthosilicate (TEOS) by a sol–gel method, and have incorporated the red-luminescent ruthenium-tris-bipyridyl complex. At an optimized ratio of PU/TEOS (1.5:1; w/w) and annealing temperature (60 °C), the membrane sensor exhibits good capability to extract water from organic solvents but also can well retain the ruthenium dye. If contacted with water-containing organic solvents such as acetone or THF, both the luminescence intensity and wavelength change significantly. The response of luminescence intensity to the water fraction in organics is sigmoidal, which can be well fitted with a modified Stern-Volmer equation. The sensor works in the ranges of 0–6 % and 0–12 % (v/v) of water in acetone and THF, respectively, with detection limits of 0.13 % and 0.486 % (v/v).
Figure
A ultrathin Ru(bpy)3 2+-doped hybrid film (~1.4 μm) prepared from PU hydrogel and TEOS shows water-dependent luminescence in both intensity and emission energy when calibrated in organic solvents.  相似文献   

5.
By taking advantage of the intrinsic fluorescence of ochratoxin A (OTA), we present a fluorescence anisotropy approach for rapid analysis of the interactions between OTA and aptamers. The specific binding of OTA with a 36-mer aptamer can induce increased fluorescence anisotropy (FA) of OTA as the result of the freedom restriction of OTA and the increase of molecular volume, and the maximum FA change is about 0.160. This FA approach enables an easy way to investigate the effects of buffer compositions like metal ions on the affinity binding. FA analysis shows the interaction between OTA and aptamer is greatly enhanced by the simultaneous presence of Ca2+ and Na+, while the binding affinity of aptamer decreases more than 18-fold when only Ca2+ exists, and the binding is completely lost when Ca2+ is absent. Crucial region of the aptamer for binding can be mapped through FA analysis and aptamer mutation. The demonstrated FA approach maintains the advantages of FA in simplicity, rapidity, and robustness. This investigation will help the development of aptamer-based assays for OTA detection in optimizing the binding conditions, modification of aptamers, and rational design.
Figure
The free ochratoxin A (OTA) molecule tumbles rapidly and shows low fluorescence anisotropy (FA), while the bound OTA by the aptamer has increased molecular volume and restricted freedom, showing enhanced FA. FA analysis allows screening the interaction between OTA and aptamer  相似文献   

6.
A novel enzyme-linked aptamer assay (ELAA) with the aid of Exonuclease I (Exo I) for colorimetric detection of small molecules was developed. The fluorescein isothiocyanate (FITC)-labeled aptamer was integrated into a double-stranded DNA (dsDNA). In the presence of target, the binding of aptamer with target protected the aptamer from Exo I degradation, which resulted in the FITC tag remaining on the aptamer. Then, the anti-FITC-HRP conjugate was used to produce an optically observable signal. By monitoring the color change, we were able to detect two model molecules, ATP and L-argininamide, with high selectivity and high sensitivity even in the serum matrix. It is expected to be a simple and general ELAA method with wide applicability.
Figure
Sensing strategy for exonuclease I-aided enzyme-linked aptamer assay  相似文献   

7.
We constructed an excimer aptamer probe containing one pyrene molecule at each end of a DNA aptamer to achieve the detection of thrombin, which binds to the heparin-binding site of thrombin with high binding affinity. The specific binding of thrombin to the excimer aptamer probe brought the two pyrene molecules at the termini of the duplex of the aptamer into close proximity, generating an excimer. The excimer emitted a distinct fluorescence peak, and fluorometric measurement of excimer allowed the sensitive detection of thrombin. The effects of experimental conditions like pH, ionic strength, and cations were investigated and optimized. The detection limit for thrombin was about 42 pM. This aptamer switch has potential in the study of molecular interactions and protein sensing with other switch-based detection strategy.
Figure
?  相似文献   

8.
Silica nanoparticles doped with the luminescent temperature probe Ru(bpy)3 2+ were prepared by a modified Stöber method and are shown to enable optical sensing of intracellular temperatures. Based on the regrowth of silica nanoseeds, the ruthenium probe was easily incorporated and then covered with a shell of pure silica. The resulting nanothermometers were immune to the quenching by oxygen owing to the outer silica layer. The nanoparticles were further coated with poly-L-lysine in order to reduce cytotoxicity and to warrant cellular uptake. The luminescence of these nanosensors is rather sensitive to temperature in the physiological range (25–45 °C), with a decrease of ?1.26 % in intensity per °C increase in temperature. The nanosensors were internalized into living cells of a hepatocellular carcinoma cell line along with gold nanorods. These display longitudinal surface plasmon resonance absorption at ~808 nm that causes a local rise in temperature. The microscopically captured luminescence intensity of the nanosensors after 808 nm irradiation of the gold nanorods decayed with increasing temperature, thereby indicating successful imaging of temperature.
Graphical Abstract
Luminescent Ru(bpy)3 2+-doped silica nanoparticles are prepared to image the cellular temperature of living cells, which is elevated by the photothermal conversion of 808-nm light with gold nanorods.  相似文献   

9.
We report on a rapid method for the detection of Salmonella O8. It does not require an enrichment step but rather uses an aptamer as a probe that was selected by system evolution of ligands by exponential enrichment (SELEX) assay. Firstly, aptamer against Salmonella O8 was selected from a 78 bp random DNA library that was prepared in-vitro. The binding ability of the aptamers to target bacterium was examined by aptamer-linked immobilized sorbent assay. A high affinity aptamer was successfully selected from the initial random DNA pool, and its secondary structure was also investigated. Next, this high affinity aptamer B10 was used to recognize Salmonella O8 via fluorescence microscopy. The selected aptamer has a high specificity and high affinity against its target. We believe that the resulting fluorescence in-situ labeling assay is a potentially useful alternative in rapid screening and detection of foodborne pathogens.
Figure  相似文献   

10.
The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru(N,N)Cl]+, where arene/N,N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/o-phenylenediamine (o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.
Fig. a
?  相似文献   

11.
We have developed a method for the determination of the three catecholamines (CAs) epinephrine (EP), norepinephrine (NE), and dopamine (DA) at sub-nanomolar levels. It is found that the luminescence of the complexes formed between the CAs and Tb3+ ion is strongly enhanced in the presence of colloidal silver nanoparticles (Ag-NPs). The Ag-NPs cause a transfer of the resonance energy to the fluorophores through the interaction of the excited-state fluorophores and surface plasmon electrons in the Ag-NPs. Under the optimized condition, the luminescence intensity of the system is linearly related to the concentration of the CAs. Linearity is observed in the concentration ranges of 2.5–110?nM for EP, 2.8–240?nM for NE, and 2.4–140?nM for DA, with limits of detection as low as 0.25?nM, 0.64?nM and 0.42?nM, respectively. Relative standard deviations were determined at 10?nM concentrations (for n?=?10) and gave values of 0.98%, 1.05% and 0.96% for EP, NE and DA, respectively. Catecholamines were successfully determined in pharmaceutical preparations, and successful recovery experiments are demonstrated for urine and serum samples.
Figure
Schematic presentation of Ag NP-enhanced luminescence of Tb3+-CA complex. (A) Luminescence intensity at 545 nm of Tb3+-EP complex is lower than that of (B) Tb3+-EP-Ag NP system when both are excited at the wavelength of 279 nm.  相似文献   

12.
Celiac disease is an immune-mediated enteropathy triggered by the ingestion of gluten. The only effective treatment consists in a lifelong gluten-free diet, requiring the food industry to tightly control the gluten contents of their products. To date, several gluten quantification approaches using antibodies are available and recommended by the legal authorities, such as Codex Alimentarius. However, whilst these antibody-based tests exhibit high sensitivity and specificity, the production of antibodies inherently requires the killing of host animals and is time-consuming and relatively expensive. Aptamers are structured single-stranded nucleic acid ligands that bind with high affinity and specificity to their cognate target, and aiming for a cost-effective viable alternative to the use of antibodies. Herein, we report the systematic evolution of ligands by exponential enrichment (SELEX)-based selection of a DNA aptamer against gliadin from a combinatorial DNA library and its application in a novel detection assay. Taking into account the hydrophobic nature of the gliadin target, a microtitre plate format was exploited for SELEX, where the target was immobilised via hydrophobic interactions, thus exposing aptatopes accessible for interaction with the DNA library. Evolution was followed using surface plasmon resonance, and following eight rounds of SELEX, the enriched DNA pool was cloned, sequenced and a clear consensus motif was identified. An apta-PCR assay was developed where competition for the aptamer takes place between the surface-immobilised gliadin and gliadin in the target sample, akin to an ELISA competitive format where the more target present in the sample, the less aptamer will bind to the immobilised gliadin. Following competition, any aptamer bound to the immobilised gliadin was heat-eluted and quantitatively amplified using real-time PCR, achieving a detection limit of approx. 2 nM (100 ng mL?1). The specificity of the selected aptamer was demonstrated and no cross-reactivity was observed with streptavidin, bovine serum albumin or anti-gliadin IgG.
Figure
Schematic overview of Apta-PCR  相似文献   

13.
We developed a biosensor based on the surface plasmon resonance (SPR) method for the study of the binding kinetics and detection of human cellular prions (PrPC) using DNA aptamers as bioreceptors. The biosensor was formed by immobilization of various biotinylated DNA aptamers on a surface of conducting polypyrrole modified by streptavidin. We demonstrated that PrPC interaction with DNA aptamers could be followed by measuring the variation of the resonance angle. This was studied using DNA aptamers of various configurations, including conventional single-stranded aptamers that contained a rigid double-stranded supporting part and aptamer dimers containing two binding sites. The kinetic constants determined by the SPR method suggest strong interaction of PrPC with various DNA aptamers depending on their configuration. SPR aptasensors have a high selectivity to PrPC and were regenerable by a brief wash in 0.1 M NaOH. The best limit of detection (4 nM) has been achieved with this biosensor based on DNA aptamers with one binding site but containing a double-stranded supporting part.
Fig
Aptasensors for kinetic evaluation and detection of prions by SPR  相似文献   

14.
We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.
Figure
Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties  相似文献   

15.
We have developed a specific method for the visual detection of Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification technology. A biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of a microplate via biotin-avidin binding. Then, the target bacteria (S. aureus), the biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and streptavidin-HRP were successively placed in the wells of the microplate. After adding TMB reagent and stop solution, the intensity of the yellow reaction product can be visually inspected or measured with a plate reader. Under optimized conditions, there is a linear relationship between absorbance at 450 nm and the concentration of S. aureus in the 10 to 107 cfu mL?1 concentration range (with an R2 of 0.9976). The limit of detection is 8 cfu mL?1.
Figure
A visual detection method for Staphylococcus aureus was based on aptamer recognition coupled to tyramine signal amplification. The linear range was from 10 to 107 cfu mL-1 and the limit of detection was 8 cfu mL-1.  相似文献   

16.
We have prepared a hydrophilic molecularly imprinted polymer (MIP) for the hydrophobic compound bisphenol A (BPA) in aqueous solution using 3-acrylamido-N,N,N-trimethylpropan-1-aminium chloride (AMTC) as the functional monomer. Under redox-polymerization conditions, BPA forms an ion-pair with AMTC, which was confirmed by 1H-NMR titration. The imprinting effect in aqueous solution was evaluated by comparison of this material with the corresponding non-imprinted polymer (NIP) and with a control polymer (CP) bearing no AMTC. The MIP showed the highest activity among the three polymers, and the imprinting factors as calculated from the amount of BPA bound to the MIP divided by the amounts bound to NIP and CP, respectively, are 1.8 and 6.0. The MIP was selective for BPA in aqueous solution, while structurally related compounds are not recognized. Such a selectivity for a hydrophobic compound is rarely observed in aqueous medium because non-specific binding of BPA inevitably leads to hydrophobic interaction.
Figure
A hydrophilic molecularly imprinted polymer (MIP) for bisphenol A (BPA) recognition was prepared in aqueous solution. The obtained MIP (BPA-MIP) showed good selectivity under aqueous conditions  相似文献   

17.
We have performed a comparative study on four protocols for the immobilization of the thrombin aptamer on a graphite-epoxy composite electrode with the aim to identify the most practical method for designing the corresponding impedimetric aptasensor. The protocols included (a) physical adsorption, (b) avidin-biotin affinity interaction, (c) electrochemical activation and covalent bonding via amide groups, and (d) electrochemical grafting using 4-carboxybenzenediazonium coupling. The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the (ferri/ferro)hexacyanide redox couple. An increase in the interfacial charge transfer resistance (Rct) was noted in all cases after the aptamer-thrombin interaction had occurred. The selectivity of the aptasensor over common serum proteins was also systematically investigated. Physical adsorption resulted in the lowest detection limit of the probe (4.5 pM), while avidin-biotin interaction resulted in highest selectivity and reproducibility exhibiting a 4.9 % relative standard deviation at pM thrombin concentration levels.
Figure
The study and comparison of four protocols for the immobilization of a DNA aptamer is reported to detect thrombin onto a graphite-epoxy composite electrode and with use of Electrochemical Impedance spectroscopy as the detection technique.  相似文献   

18.
We have prepared the hydrophobic amino-functionalized ionic liquid (IL) 1-(2-aminoethyl)-3-butylimidazolium hexafluorophosphate and investigated its extraction behavior for copper(II) ion as a model cation. The IL, due to the presence of an amino group, is capable of complexing Cu(II) in a ratio of 6:1. The parameters affecting the extraction efficiency were optimized. The IL-based liquid–liquid microextraction was successfully applied to the analysis of Cu(II) in an environmental water standard reference material. The results are promising in terms of liquid–liquid microextraction, separation, and preconcentration of Cu(II).
Figure
A hydrophobic amino-functionalized ionic liquid (IL) [NH2C2C4im][PF6] was synthesized. The IL exhibits good extractability for copper (II) ion due to the presence of an amino group.  相似文献   

19.
We report on a method for electrochemical enantioselective recognition of tryptophan (Trp) enantiomers. It is based on competitive host-guest interaction between a deoxy-(2-aminoethylamino)-β-cyclodextrin (CD) bound to graphene nanosheets and the Cu(II) complexes of the Trp enantiomers via a ligand exchange mechanism. Chiral recognition was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The results reveal that the CD bound to graphene displays a stronger interaction with the Cu(II) complex of L-Trp than to that of D-Trp. The method was applied to the determination of the ratio of Trp enantiomers in mixtures.
Figure
The CD-GNs are dipped in D-Trp or L-Trp solution containing Cu(II), the complexes of metal ion with L-Trp caused more remarkable difference in the [Fe(CN)6]3?/4? than the complexes of metal ion with D-Trp.  相似文献   

20.
We report on a simple method for the determination of iodide in aqueous solution by exploiting the fluorescence enhancement that is observed if the complex formed between carbon dots and mercury ion is exposed to iodide. Fluorescent carbon dots (C-dots) were treated with Hg(II) ion which causes quenching of the emission of the C-dots. On addition of iodide, the Hg(II) ions are removed from the complex due to the strong interaction between Hg(II) and iodide. This causes the fluorescence to be restored and enables iodide to be determined in the 0.5 to 20 μM concentration range and with a detection limit of ~430 nM. The test is highly selective for iodide (over common other anions) and was used for the determination of iodide in urine.
Figure
A“turn-on” fluorescent probe based on carbon dots was obtained and using it to determine the concentration of iodide according to the fluorescent enhancement in aqueous solution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号