首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Nucleobase peroxyl radicals are the major reactive intermediates formed in DNA when the biopolymer is exposed to gamma-radiolysis under aerobic conditions. The major reaction pathways for the peroxyl radical (1) derived from 5,6-dihydro-2'-deoxyuridin-6-yl involve pi-bond addition to or hydrogen atom abstraction from the adjacent nucleotides to produce tandem lesions. The ability to independently generate 1 at a defined site in DNA enabled us to probe its reactivity by varying the local DNA structure. The effect of DNA structure variation reveals that 1 reacts from its syn- and anti-conformations in competition with trapping by thiol. These experiments also reveal that tandem lesions will be produced as a mixture of diastereomers, which could impact their biological effects.  相似文献   

2.
5,6-Dihydro-2'-deoxyuridin-6-yl (1) was independently generated via photolysis of 3. The radical is an analogue of the major reactive species produced from thymidine upon reaction with hydroxyl radical, which is the dominant DNA-damaging agent produced by the indirect effect of gamma-radiolysis. Under aerobic conditions, the peroxyl radical (2) derived from 1 reacts approximately 82% of the time with either the 5'- or 3'-adjacent nucleotide to produce two contiguously damaged nucleotides, known as tandem lesions. The structures and distribution of tandem lesions were investigated using probes that selectively detect abasic sites, ESI-MS/MS, and competition kinetics. In addition to 2-deoxyribonolactone, nonoxidized abasic sites were detected. 18O-Labeling verified that H2O was the source of oxygen in the abasic sites, but that O2 was the source of the oxygen in the 5,6-dihydro-6-hydroxy-2'-deoxyuridine derived from 2. ESI-MS/MS experiments, in conjunction with isotopic labeling, identified several products and provided direct evidence for peroxyl radical addition to the adjacent thymine bases. Kinetic studies revealed that peroxyl radical addition to the 5'-thymine was favored by approximately 4-5-fold over C1'-hydrogen atom abstraction from the respective deoxyribose ring, and that 2-deoxyribonolactone formation accounts for approximately 11% of the total amount of tandem lesions produced. These results suggest that tandem lesions, whose biochemical effects are largely unknown, constitute a major family of DNA damage products produced by the indirect effect of gamma-radiolysis.  相似文献   

3.
Nucleobase radicals are the major family of reactive intermediates formed when nucleic acids are exposed to gamma-radiolysis. Elucidation of their reactivity is complicated by the formation of multiple species randomly throughout the biopolymers. 5,6-Dihydro-2'-deoxyuridin-6-yl (1) was generated upon photolysis (350 nm) of the respective tert-butyl ketone (2). The radical abstracts hydrogen atoms from beta-mercaptoethanol (k = 8.8 +/- 0.5 x 10(6) M(-)(1) s(-)(1)) and 2,5-dimethyltetrahydrofuran (k = 31 +/- 2.5 M(-)(1) s(-)(1)). The latter was used as a model for the 2-deoxyribose component of DNA. The major product formed in the presence of O(2) was 6-hydroxy-5,6-dihydro-2'-deoxyuridine (11), which is believed to be formed directly from the peroxy precursor and not via elimination of superoxide. Small amounts of 2-deoxyribonolactone (13) were also formed under aerobic conditions. This product is believed to result from intramolecular hydrogen atom abstraction by the C6-peroxyl radical (14) and suggests that gamma-radiolysis may indirectly result in oxidation of the C1'-position of nucleotides, despite the inaccessibility of this hydrogen in duplex DNA.  相似文献   

4.
This paper describes the reactivity of a molecule that combines two desirable chemical processes into one molecule for the first time. Interstrand cross-links (ISCs) are an effective family of lesions produced by cytotoxic agents that target DNA. For instance, ISCs are the source of mitomycin C's cytotoxicity. Radiosensitizing agents are molecules that enhance DNA damage produced by ionizing radiation, especially under O2-deficient conditions. Phenyl selenide 1 is the first example of a modified nucleotide that can be incorporated in DNA by polymerases, which produces ISCs when DNA containing it is exposed to gamma-radiolysis under O2-deficient conditions. These experiments suggest that 1 could be useful as a novel type of radiosensitizing agent.  相似文献   

5.
Platinum adducts are supposed to be the cytotoxic lesions in DNA after platinum-containing anticancer therapy. Various adducts are formed upon interaction of platinum complexes with nucleotides, but contribution of individual adducts to antitumor activity and toxicity of platinum complexes still remains to be examined. A capillary zone electrophoresis (CZE) method is described that is suitable to separate individual platinum adducts. We investigated the formation of adducts following the reaction of cis-diamminedichloroplatinum (II) (cisplatin) with various DNA nucleotides. Baseline separation of unmodified and modified nucleotides (adducts) was achieved using uncoated fused-silica capillaries and basic separation buffers. In order to elucidate the observed peak pattern, a coupled CZE-electrospray ionization-mass spectrometry (ESI)-MS approach was applied. After incubation of mononucleotides with cisplatin, monochloro, monoaqua and bifunctional adduct species were detected. Consequently, the migration order of nucleotides and individual platinum adducts could be determined. Moreover, the time-dependent conversion from monochloro to monoaqua and subsequently to bifunctional adducts was monitored. In conclusion, individual platinum adducts were separated by CZE and identified by CZE-ESI-MS. Formation and conversion of distinct species were confirmed. Potential applications comprise studies of novel platinum complexes, investigations of platinum-adduct formation with DNA, and determination of platinum-DNA adducts in cells.  相似文献   

6.
High-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) has been used to search for the formation of as yet unidentified radiation-induced DNA lesions. For that purpose, the characteristic fragmentation of most of 2'-deoxyribonucleosides that corresponds to the loss of the 2-deoxyribose moiety (loss of 116 mass units) has been utilized to specifically detect modified nucleosides. Aerated aqueous solutions of DNA were exposed to ionizing radiation, and subsequently DNA was digested to nucleosides with a cocktail of endo- and exonucleases. HPLC/ESI-MS/MS analysis of the resulting 2'-deoxyribonucleoside mixture allowed us to detect four novel DNA modifications. In a subsequent step, the sensitivity of the tandem mass spectrometer was used to search for the formation of the newly detected lesions in the DNA of gamma-irradiated cells. Thus, one of the four newly detected lesions was found to be significantly generated in cellular DNA upon exposure to ionizing radiation. In addition, the latter lesion was also shown to be present in untreated cells, indicating that the modified nucleoside could be formed endogenously.  相似文献   

7.
Oxidatively generated damage to DNA induced by a pyrenyl photosensitizer residue (Py) covalently attached to a guanine base in the DNA sequence context 5'-d(CAT[G1Py]CG2TCCTAC) in aerated solutions was monitored from the initial one-electron transfer, or hole injection step, to the formation of chemical end-products monitored by HPLC, mass spectrometry, and high-resolution gel electrophoresis. Hole injection into the DNA was initiated by two-photon excitation of the Py residue with 355 nm laser pulses, thus producing the radical cation Py*+ and hydrated electrons; the latter are trapped by O2, thus forming the superoxide anion O2*-. The decay of the Py*+ radical is correlated with the appearance of the G*+/G(-H)* radical on microsecond time scales, and O2*- combines with guanine radicals at G1 to form alkali-labile 2,5-diamino-4H-imidazolone lesions (Iz1Py). Product formation in the modified strand is smaller by a factor of 2.4 in double-stranded than in single-stranded DNA. In double-stranded DNA, hot piperidine-mediated cleavage at G2 occurs only after G1Py, an efficient hole trap, is oxidized thus generating tandem lesions. An upper limit of hole hopping rates, khh < 5 x 103 s-1 from G1*+-Py to G2 can be estimated from the known rates of the combination reaction of the G(-H)* and O2*- radicals. The formation of Iz products in the unmodified complementary strand compared to the modified strand in the duplex is approximately 10 times smaller. The formation of tandem lesions is observed even at low levels of irradiation corresponding to "single-hit" conditions when less than approximately 10% of the oligonucleotide strands are damaged. A plausible mechanism for this observation is discussed.  相似文献   

8.
DNA damage pathways induced by low-energy electrons (LEEs) are believed to involve the formation of 2-deoxyribose radicals. These radicals, formed at the C3' and C5' positions of nucleotides, are the result of cleavage of the C-O phosphodiester bond through transfer of LEEs to the phosphate group of DNA oligomers from the nucleobases. A considerable amount of information has been obtained to illuminate the identity of the unmodified oligonucleotide products formed through this process. There exists, however, a paucity of information as to the nature of the modified lesions formed from degradation of these sugar radicals. To determine the identity of the damage products formed via the 2',3'-dideoxy-C3'-thymidinyl radical (C3'(dephos) sugar radical), phenyl selenide and acyl modified sugar and nucleoside derivatives have been synthesized, and their suitability as photochemical precursors of the radical of interest has been evaluated. Upon photochemical activation of C3'-derivatized nucleosides in the presence of the hydrogen atom donor tributyltin hydride, 2',3'-dideoxythymidine is formed indicating the selective generation of the C3'(dephos) sugar radical. These precursors will make the identification and quantification of products of DNA damage derived from radicals generated by LEEs possible.  相似文献   

9.
OH⋅-induced oxidation products of DNA nucleosides and nucleotides have been structurally characterized by collision-induced dissociation tandem mass spectrometry (CID-MS2) and Infrared Multiple Photon Dissociation (IRMPD) spectroscopy. CID-MS2 results have shown that the addition of one oxygen atom occurs on the nucleobase moiety. The gas-phase geometries of +16 mass increment products of 2’-deoxyadenosine (dA(O)H+), 2’-deoxyadenosine 5’-monophosphate (dAMP(O)H+), 2’-deoxycytidine (dC(O)H+), and 2’-deoxycytidine 5’-monophosphate (dCMP(O)H+) are extensively investigated by IRMPD spectroscopy and quantum-chemical calculations. We show that a carbonyl group is formed at the C8 position after oxidation of 2’-deoxyadenosine and its monophosphate derivative. For 2’-deoxycytidine and its monophosphate derivative, the oxygen atom is added to the C5 position to form a C−OH group. IRMPD spectroscopy has been employed for the first time to provide direct structural information on oxidative lesions in DNA model systems.  相似文献   

10.
The factors that influence the reactivity of C5' radicals in purine moieties under aerobic conditions are unknown not only in DNA, but also in simple nucleosides. 5',8-Cyclopurine lesions are the result of a rapid C5' radical attack to the purine moieties before the reaction with oxygen. These well-known lesions among the DNA modifications were suppressed by the presence of molecular oxygen in solution. Here we elucidate the chemistry of three purine-substituted C5' radicals (i.e., 2'-deoxyadenosin-5'-yl, 2'-deoxyinosin-5'-yl, and 2'-deoxyguanosin-5'-yl) under oxidative conditions using gamma-radiolysis coupled with product studies. 2'-Deoxyadenosin-5'-yl and 2'-deoxyinosin-5'-yl radicals were selectively generated by the reaction of hydrated electrons (e(aq)(-)) with 8-bromo-2'-deoxyadenosine and 8-bromo-2'-deoxyinosine followed by a rapid radical translocation from the C8 to the C5' position. Trapping these two C5' radicals with Fe(CN)6(3-) gave corresponding hydrated 5'-aldehydes in good yields that were isolated and fully characterized. When an oxygen concentration in the range of 13-266 microM (typical oxygenated tissues) is used, the hydrated 5'-aldehyde is accompanied by the 5',8-cyclopurine nucleoside. The formation of 5',8-cyclopurines is relevant in all experiments, and the yields increased with decreasing O2 concentration. The reaction of HO(*) radicals with 2'-deoxyadenosine and 2'-deoxyguanosine under normoxic conditions was also investigated. The minor path of C5' radicals formation was found to be ca. 10% by quantifying the hydrated 5'-aldehyde in both experiments. Rate constants for the reactions of the 2'-deoxyadenosin-5'-yl with cysteine and glutathione in water were determined by pulse radiolysis to be (2.1 +/- 0.5) x 10(7) and (4.9 +/- 0.6) x 10(7) M(-1) s(-1) at 22 degrees C, respectively.  相似文献   

11.
The yields of H2 and Cl- were determined in the radiolysis of deaerated, aerated, and water mixtures of poly(vinyl chloride) (PVC) powders with gamma-rays and 5 MeV He ions. H2 yields with gamma-rays are low at about 0.25 molecule/100 eV and they double with He ion radiolysis indicating a second order formation process. The production of H2 in the gamma-radiolysis of water-PVC mixtures is much greater than expected from the weight fraction of the components and is due to acidification of the aqueous phase by the evolution of HCl from the polymer. Cl- yields in the gamma-radiolysis of PVC with number average weights of 22,000, 47,000, and 99,000 Daltons are 19.6, 33.8, and 32.5 atoms/100 eV. Cl- continuously evolves from the polymer for days following radiolysis. The extremely large yields suggest that a chain process involving radicals stabilized on the polymeric chain are responsible. Reflectance UV/vis and infrared spectroscopy show subtle changes in the PVC with radiolysis while UV/vis absorption spectra clearly indicate the formation of polyenes with 1 to 11 units. Cl- formation is probably initiated by Cl radical production followed by an electron rearrangement mechanism along the PVC chain to produce more Cl- and polyenes.  相似文献   

12.
After gamma-radiolysis at 77°K, glassy alkanes emit weakly in the visible on warning. The similar but stronger emission from dilute olefin solutions suggests that the alkane luminescence is due to radiolysis products. The nature of the emitters is discussed: it is concluded tentatively that they are olefins in twisted excited states formed by recombination of olefin cations.  相似文献   

13.
14.
[reaction: see text] Hydrogen atom abstraction from the C5'-position of nucleotides in DNA results in direct strand scission. The newly formed 5'-termini of the cleaved DNA consists of alkali-labile fragments of the oxidized nucleotide. One terminus contains a 5'-aldehyde as part of an otherwise undamaged nucleotide (T-al). A second more structurally distinct product that is produced in lower yields results from cleavage of the C4'-C5' carbon-carbon bond. The 1,4-dioxo-2-phosphorylbutane (DOB) is a precursor of the alkylating agent but-2-ene-1,4-dial. To facilitate studies on these lesions, methods for synthesizing oligodeoxynucleotides containing DOB or T-al at their 5'-termini were developed. The effects of these lesions on the UV-melting temperatures of duplex DNA, and their cleavage labilities were determined. T-al cleaves very slowly (t(1/2) = 100.7 h), whereas DOB has a half-life at 37 degrees C (pH 7.2) of less than 11 h. In addition, DOB forms a stable adduct very efficiently with Tris, which protects the abasic site against cleavage.  相似文献   

15.
The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.  相似文献   

16.
In the present work, we study the reaction of singlet oxygen (1O2) with isolated DNA. Emphasis is placed on the identification and quantitative measurement of the DNA modifications that are produced by the reaction of 1O2 with DNA. For this purpose, calf‐thymus DNA was incubated with the endoperoxide of N,N′‐di(2,3‐dihydroxypropyl)‐1,4‐naphthalenedipropanamide, a chemical generator of 1O2. Thereafter, DNA was digested, and the resulting oxidized nucleosides were measured by means of a recently optimized high‐performance‐liquid‐chromatography tandem‐mass‐spectrometry assay. It was found that, among the different DNA lesions observed, 7,8‐dihydro‐8‐oxo‐2′‐deoxyguanosine is the major 1O2‐mediated DNA‐damage product. Interestingly, cyclobutane pyrimidine dimers, oxidized pyrimidine bases, 7,8‐dihydro‐8‐oxo‐2′‐deoxyadenosine, and 2,6‐diamino‐5‐formamido‐4‐hydroxypyrimidine are not formed, at least not in detectable amounts, following treatment of DNA with the 1O2 generator. The reported results strongly suggest that the decomposition of the endoperoxide provides a pure source of 1O2, and that reaction of 1O2 with isolated DNA induces the specific formation of 7,8‐dihydro‐8‐oxo‐2′‐deoxyguanosine.  相似文献   

17.
In this paper a micellar interface, constituted by the cationic surfactant CTAB, in presence of 1,2-epoxydodecane and nucleotides was used for catanionic multi-lamellar vesicles (MLVs) formation. The micellar solution of CTAB is able to disperse the 1,2 epoxydodecane in the micellar core promoting the reaction of this reagent with the nucleotide attracted by the positive surface charge of the micellar aggregates. The alkylation of AMP and UMP nucleotides leads to the synthesis of nucleolipids. The behaviour of the supramolecular structures formed depends on the starting reagents (AMP, UMP and AMP+UMP) and on the assembly capabilities of the products. In particular nucleotides and nucleotides derivatives interaction effects are evaluated during the multi-lamellar vesicles formation. NMR spectroscopy and UV-vis measurements performed on MLVs showed strong aryl interactions. Interestingly, NMR spectra revealed prevailing stacking interactions between complementary nucleolipids. The assembly of complementary nucleotides affects the course of the reaction during the MLVs formation. Moreover the MLVs supramolecular stability has been tested by means of turbidity and UV-vis measurements. In particular, an enhanced stability has been found in systems prepared with complementary nucleotides confirming that in these systems the self-assembly process is influenced by nucleolipids interactions. Furthermore by following the hypocromic effect during the micellar catalysis, we showed that even in the earlier stages of the reaction significant differences are detectable.  相似文献   

18.
液相色谱-串联质谱法测定生物样本全基因组DNA甲基化   总被引:2,自引:0,他引:2  
建立了基于液相色谱-电喷雾串联质谱的分析方法,对生物样本中全基因组DNA甲基化水平进行定量测定.首先将DNA从生物样本中提取出来,将DNA片段酶解为单核苷,利用液相色谱-串联质谱测定胞嘧啶核苷和5-甲基胞嘧啶核苷的含量,从而计算出其全基因组DNA甲基化率.利用该法研究了暴露于全氟辛烷磺酸的L-02细胞、10例原发性肝癌病例血浆样本和10例对照血浆样本的全基因组DNA甲基化水平,得出了它们的总甲基化率变化的初步结果.本方法操作简单,具有很高的灵敏度和稳定性,为研究生物样本,尤其是临床上易得但DNA含量极低的血浆样本的总甲基化水平提供了思路.  相似文献   

19.
The reaction of styrene oxide, a potential carcinogen in humans, with DNA constituents has been used to develop an improved method for quantification of DNA adducts. To enable monitoring of DNA adducts caused by xenobiotics at physiological relevant levels, a robust, reliable and powerful method based on monitoring of phosphorus in nucleotides is described. An efficient enzymatic digestion step and a sample-preconcentration procedure are essential, and enable separation of alkylated nucleotides from the large excess of native nucleotides. The adducts are detected by means of the phosphorus signal measured at mass m/z=31 with an inductively-coupled-plasma mass spectrometer. Bis(4-nitrophenyl)phosphate (BNPP) serves as internal standard for quantification of the adducts. The absolute limit of detection, 45 fmol, corresponds to detection of three modified nucleotides among 107 native nucleotides (the calculation is based on use of 50 g calf thymus DNA). An adduct formation ratio at the DNA of 3.6 adducts per 1000 nucleotides was measured, which is 75% lower than for reaction with monomeric 2-deoxy-nucleotides. In addition, a substantial amount of phosphate adducts were detected, but in DNA the rate of phosphate formation was lower than with monomeric nucleotides. Most probably these adducts escaped unnoticed when 31P-post-labelling was employed.  相似文献   

20.
One nanosecond molecular dynamics (MD) simulation was performed for two DNA segments each composed of 30 base pairs. In one DNA segment the native guanines at nucleotides positions 17 and 19 were replaced with two 8-oxoguanines (8-oxoG) (8-oxoG is mutagenic DNA oxo-lesion). The analysis of results was focused on the electrostatic energy that is supposed to be significant factor causing the disruption of DNA base stacking in DNA duplex and may also serve as a signal toward the repair enzyme informing the presence of the lesion. The repulsive interaction between 8-oxoG and the entire DNA molecule was observed, which caused the extrahelical position of 8-oxoG (position 19). The repulsive electrostatic interaction between both 8-oxoG lesions contributed to the flipping out of one 8-oxoG and to the local instability of the lesioned DNA region. The electrostatic potential at the surface of DNA close to the lesions has more negative value than the same region on the native DNA. This electrostatic potential may signal presence of the lesion to the repair enzyme. In the simulation of native DNA segment, no significant structural changes were observed and B-DNA structure was well preserved throughout the MD simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号