首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A class of universal relations for isotropic elastic materials is described by the tensor equationTB = BT. This simple rule yields at most three component relations which are the generators of many known universal relations for isotropic elasticity theory, including the well-known universal rule for a simple shear. Universal relations for four families of nonhomogeneous deformations known to be controllable in every incompressible, homogeneous and isotropic elastic material are exhibited. These same universal relations may hold for special compressible materials. New universal relations for a homogeneous controllable shear, a nonhomogeneous shear, and a variable extension are derived. The general universal relation for an arbitrary isotropic tensor function of a symmetric tensor also is noted.  相似文献   

2.
A nonlinear isotropic elastic block is subjected to a homogeneous deformation consisting of simple shear superposed on triaxial extension. Two new relations are established for this deformation which are valid for all nonlinear elastic isotropic materials, and hence are universal relations. The first is a relation between the stretch ratios in the plane of shear and the amount of shear when the deformation is supported only by shear tractions. The second relation is established for a thin-walled cylinder under combined extension, inflation and torsion. Each material element of the cylinder undergoes the same local homogeneous deformation of shear superposed on triaxial extension. The properties of this deformation are used to establish a relation between pressure, twisting moment, angle of twist and current dimensions when no axial force is applied to the cylinder. It is shown that these relations also apply for a mixture of a nonlinear isotropic solid and a fluid.  相似文献   

3.
In his study of combined finite extension and torsion of a nonlinear, incompressible, isotropic elastic circular cylinder, Rivlin [1] established a relation for the torsional stiffness which depends only on the axial force, the axial extension ratio and the radius of the undeformed cylinder, in the case of small twist. The relationship did not depend on the structure of the stored energy function and is hence a universal relation. In this paper, we extend Rivlin's result to the case of combined extension and torsion of a cylindrical mixture of a nonlinear elastic solid and fluid.  相似文献   

4.
Local universal relations are relations between stress and kinematic variables which hold for all materials of a particular class irrespective of specific material parameters. A method is developed for obtaining local universal relations for most first gradient materials. The currently known local universal relations for isotropic elastic materials have been extended to all isotropic first gradient materials under constant step deformation histories and have also been extended to all isotropic first gradient materials undergoing arbitrary time dependent triaxial extensions along fixed material directions. It has been shown that universal relations exist for some anisotropic materials. A set of pseudo-universal relations has been obtained for anisotropic elastic materials which can be used to decouple the material functions. These pseudo-universal relations contain some, but not all, material functions. A global universal relation has been developed for the extension and torsion of an isotropic cylindrical shaft which holds for all incompressible first gradient materials.  相似文献   

5.
This article considers a static problem of torsion of a cylinder composed of incompressible, nonlinear-elastic materials at large deformations. The cylinder contains a central, round, cylindrical inclusion that was initially twisted and stretched (or compressed) along the axis and fastened to a strainless, external, hollow cylinder. The problem statement and solution are based on the theory of superimposed large strains. An accurate analytical solution of this problem based on the universal solution for the incompressible material is obtained for arbitrary nonlinear-elastic isotropic incompressible materials. The detailed investigation of the obtained solution is performed for the case in which the cylinders are composed of Mooney-type materials. The Poynting effect is considered, and it is revealed that composite cylinder torsion can involve both its stretching along the axis and compression in this direction without axial force, depending on the initial deformation.  相似文献   

6.
The nonlinear elastic response of a class of materials for which the deformation is subject to an internal material constraint described in experiments by James F. Bell on the finite deformation of a variety of metals is investigated. The purely kinematical consequences of the Bell constraint are discussed, and restrictions on the full range of compatible deformations are presented in geometrical terms. Then various forms of the constitutive equation relating the stress and stretch tensors for an isotropic elastic Bell material are presented. Inequalities on the mechanical response functions are introduced. The importance of these in applications is demonstrated in several examples throughout the paper.This paper focuses on homogeneous deformations. In a simple illustration of the theory, a generalized form of Bell's empirical rule for uniaxial loading is derived, and some peculiarities in the response under all-around compressive loading are discussed. General formulae for universal relations possible in an isotropic elastic, Bell constrained material are presented. A simple method for the determination of the left stretch tensor for essentially plane problems is illustrated in the solution of the problem of pure shear of a materially uniform rectangular block. A general formula which includes the empirical rule found in pure shear experiments by Bell is derived as a special case. The whole apparatus is then applied in the solution of the general problem of a homogeneous simple shear superimposed on a uniform triaxial stretch; and the great variety of results possible in an isotropic, elastic Bell material is illustrated. The problem of the finite torsion and extension of a thin-walled cylindrical tube is investigated. The results are shown to be consistent with Bell's data for which the rigid body rotation is found to be quite small compared with the gross deformation of the tube. Several universal formulas relating various kinds of stress components to the deformation independently of the material response functions are derived, including a universal rule relating the axial force to the torque.Constitutive equations for hyperelastic Bell materials are derived. The empirical work function studied by Bell is introduced; and a new constitutive equation is derived, which we name Bell's law. On the basis of this law, we then derive exactly Bell's parabolic laws for uniaxial loading and for pure shear. Also, form Bell's law, a simple constitutive equation relating Bell's deviatoric stress tensor to his finite deviatoric strain tensor is obtained. We thereby derive Bell's invariant parabolic law relating the deviatoric stress intensity to the corresponding strain intensity; and, finally, Bell's fundamental law for the work function expressed in these terms is recovered. This rule is the foundation for all of Bell's own theoretical study of the isotropic materials cataloged in his finite strain experiments on metals, all consistent with the internal material constraint studied here.  相似文献   

7.
Elastic rod models provide a means to interpret single molecule DNA experiments as well as predict DNA behavior under physiological conditions. Here we use an elastic rod model to predict the stability boundary (critical torque vs. applied tension) for single molecule DNA experiments in which the molecule is subjected to applied tension and twist. We discuss the shortcomings of the usual isotropic rod model. We then derive a consistent non-linear material law from the general representation for a hemitropic (chiral) rod. Finally, we present results of a standard bifurcation analysis predicting the stability boundary. We find results from the non-linear hemitropic rod to match the data closely.  相似文献   

8.
The undamped, finite amplitude, periodic motion of a load supported symmetrically by arbitrary isotropic, elastic shear mountings is investigated. Conditions on the shear response function sufficient to guarantee periodic motions for finite shearing with arbitrary initial data are provided. Some general results applicable for all simple shearing oscillators in the class are derived and illustrated graphically. The mechanical response of the general nonlinear shearing oscillator is compared with the response of a certain linear oscillator of comparable design. As consequence, certain static and dynamic aspects of the motion of an arbitrary nonlinear oscillator supported by shear springs are compared with those of a simple, linear oscillator for which the response is well-known and readily determined for the same initial data. The effect of a finite static shear deformation on the frequency equation for superimposed, small amplitude vibrations of the load is examined. The general analysis is applied to a class of hyperelastic biological tissues; and the frequency relation for finite amplitude oscillations of a load supported by soft tissue is derived. The finite amplitude oscillatory shearing of a general isotropic elastic continuum is described; and three universal relations connecting the stress and the oscillatory shearing deformation for every isotropic elastic material are presented.  相似文献   

9.
The phenomenon of surface instability of an isotropic half-space under biaxial plane stress is studied for compressible elastic materials in finite strain. Euler's method is used to derive the general form of the stability criterion, and analytical details are exhibited by special application to the class of hyperelastic Hadamard materials in two complementary cases: (i) the full solution is derived for the compressible, neo-Hookean members, and (ii) the plane deformation solution is provided for every isotropic, elastic material and specific results are presented for the full Hadamard class. Results appropriate to incompressible Mooney-Rivlin materials are herein obtained as special limit cases. Several theorems are established and some of the conclusions are illustrated graphically.  相似文献   

10.
Differential conditions are derived for a smooth deformation to be universal for a class of isotropic hyperelastic materials that we regard as a compressible variant (a notion we make precise) of Mooney–Rivlin’s class, and that includes the materials studied originally by Tolotti in 1943 and later, independently, by Blatz. The collection of all universal deformations for an incompressible material class is shown to contain, modulo a uniform dilation, all the universal deformations for its compressible variants. As an application of this result, by searching the known families of universal deformations for all incompressible isotropic materials, a nontrivial universal deformation for Tolotti materials is found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers.  相似文献   

12.
For the problem of torsion superimposed on extension of incompressible nonlinearly elastic transversely isotropic circular cylinders, a simple asymptotic analysis is carried out on using a small parameter that reflects the moderate twisting of slender cylinders, which corresponds to a typical testing regime for biological soft tissue. The analysis is carried out for a subclass of strain-energy densities that reflect transversely isotropic material response. On using a four-parameter polynomial expression for the strain-energy density in terms of certain classical invariants, this analysis is shown to be in excellent agreement with experimental data obtained by other authors for rabbit papillary muscles. An explicit condition on the strain-energy density is obtained that determines whether the stretched cylinder tends to elongate or shorten on twisting. For the special case of pure torsion where no extension is allowed, this condition determines whether the classical or reverse Poynting effect occurs. For the rabbit papillary muscles, the theoretical results predict and the experimental results confirm that a reverse Poynting-type effect occurs where the stretched rabbit muscle tends to shorten on twisting.  相似文献   

13.
Summary For homogeneous isotropic elastic materials there are simple interrelations connecting Young's modulus, Poisson's ratio, the rigidity modulus and the modulus of compression. However for anisotropic materials the situation is quite different. Young's modulus is a function of direction and Poisson's ratio and the rigidity modulus are functions of pairs of orthogonal directions. Here some simple universal connexions between the moduli for various directions are simply derived for general anisotropic materials. No particular symmetry is assumed in the material.  相似文献   

14.
In this paper the equations governing small amplitude motions in a rotating transversely isotropic initially stressed elastic solid are derived, both for compressible and incompressible linearly elastic materials. The equations are first applied to study the effects of initial stress and rotation on the speed of homogeneous plane waves propagating in a configuration with uniform initial stress. The general forms of the constitutive law, stresses and the elasticity tensor are derived within the finite deformation context and then summarized for the considered transversely isotropic material with initial stress in terms of invariants, following which they are specialized for linear elastic response and, for an incompressible material, to the case of plane strain, which involves considerable simplification. The equations for two-dimensional motions in the considered plane are then applied to the study of Rayleigh waves in a rotating half-space with the initial stress parallel to its boundary and the preferred direction of transverse isotropy either parallel to or normal to the boundary within the sagittal plane. The secular equation governing the wave speed is then derived for a general strain–energy function in the plane strain specialization, which involves only two material parameters. The results are illustrated graphically, first by showing how the wave speed depends on the material parameters and the rotation without specifying the constitutive law and, second, for a simple material model to highlight the effects of the rotation and initial stress on the surface wave speed.  相似文献   

15.
In this paper we present a theory for porous elastic shells using the model of Cosserat surfaces. We employ the Nunziato–Cowin theory of elastic materials with voids and introduce two scalar fields to describe the porosity of the shell: one field characterizes the volume fraction variations along the middle surface, while the other accounts for the changes in volume fraction along the shell thickness. Starting from the basic principles, we first deduce the equations of the nonlinear theory of Cosserat shells with voids. Then, in the context of the linear theory, we prove the uniqueness of solution for the boundary initial value problem. In the case of an isotropic and homogeneous material, we determine the constitutive coefficients for Cosserat shells, by comparison with the results derived from the three-dimensional theory of elastic media with voids. To this aim, we solve two elastostatic problems concerning rectangular plates with voids: the pure bending problem and the extensional deformation under hydrostatic pressure.  相似文献   

16.
The purpose of this research is to investigate the simple torsion problem for a solid circular cylinder composed of isotropic hyperelastic incompressible materials with limiting chain extensibility. Three popular models that account for hardening at large deformations are examined. These models involve a strain-energy density which depends only on the first invariant of the Cauchy–Green tensor. In the limit as a polymeric chain extensibility tends to infinity, all of these models reduce to the classical neo-Hookean form. The main mechanical quantities of interest in the torsion problem are obtained in closed form. In this way, it is shown that the torsional response of all three materials is similar. While the predictions of the models agree qualitatively with experimental data, the quantitative agreement is poor as is the case for the neo-Hookean material. In fact, by using a global universal relation, it is shown that the experimental data cannot be predicted quantitatively by any strain-energy density which depends solely on the first invariant. It is shown that a modification of the strain energies to include a term linear in the second invariant can be used to remedy this defect. Whether the modified strain-energies, which reflect material hardening, are a feasible alternative to the classic Mooney–Rivlin model remains an open question which can be resolved only by large strain experiments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Universal quasi-static motions for a class of incompressible, viscoelastic materials of differential type are examined. These time dependent motions are similar to corresponding static universal deformations well-known for incompressible, isotropic elastic materials. General details are illustrated for the pure torsion problem, and specific results and physical effects are provided for the viscoelastic Mooney-Rivlin model.  相似文献   

18.
Experimental data for simple tension suggest that there is a power–law kinematic relationship between the stretches for large classes of slightly compressible (or almost incompressible) non-linearly elastic materials that are homogeneous and isotropic. Here we confine attention to a particular constitutive model for such materials that is of generalized Varga type. The corresponding incompressible model has been shown to be particularly tractable analytically. We examine the response of the slightly compressible material to some nonhomogeneous deformations and compare the results with those for the corresponding incompressible model. Thus the effects of slight compressibility for some basic nonhomogeneous deformations are explicitly assessed. The results are fundamental to the analytical modeling of almost incompressible hyperelastic materials and are of importance in the context of finite element methods where slight compressibility is usually introduced to avoid element locking due to the incompressibility constraint. It is also shown that even for slightly compressible materials, the volume change can be significant in certain situations.   相似文献   

19.
The finite amplitude, free vibrational characteristics of a simple mechanical system consisting of an axisymmetric rigid body supported by a highly elastic tubular shear spring subjected to axial, rotational, and coupled shearing motions are studied. Two classes of elastic tube materials are considered: a compressible material whose shear response is constant, and an incompressible material whose shear response is a quadratic function of the total amount of shear. The class of materials with constant shear response includes the incompressible Mooney-Rivlin material and certain compressible Blatz-Ko, Hadamard, and other general kinds of models. For each material class, the quasi-static elasticity problem is solved to determine the telescopic and gyratory shearing deformation functions needed to evaluate the elastic tube restoring force and torque exerted on the body. For all materials with constant shear response, the differential equations of motion are uncoupled equations typical of simple harmonic oscillators. Hence, exact solutions for the forced vibration of the system can be readily obtained; and for this class, engineering design formulae for the load-deflection relations are discussed and compared with experimental results of others'. For the quadratic material, however, the general motion of the body is characterized by a formidable, coupled system of nonlinear equations. The free, coupled shearing motion for which either the axial or the azimuthal shear deformation may be small is governed by a pair of equations of the Duffing and Hill types. On the other hand, the finite amplitude, pure axial and pure rotational motions of the load are described by the classical, nonlinear Duffing equation alone. A variety of problems are solved exactly for these separate free vibrational modes, and a number of physical results are presented throughout.  相似文献   

20.
一种新的橡胶材料弹性本构模型   总被引:1,自引:0,他引:1  
魏志刚  陈海波 《力学学报》2019,51(2):473-483
橡胶类材料本构关系对于科学研究和工程应用具有重要意义,但已有的橡胶模型的拟合能力和可靠性需要进一步提高.为解决此问题,本文提出了一种新的橡胶材料的各向同性、不可压缩柯西弹性模型.研究了橡胶材料本构关系的模型形式,基于平面应力变形状态,提出了一种以较大的两个伸长率为自变量、适用于一般变形状态的橡胶材料弹性本构模型形式;研究了橡胶材料在侧面受约束条件下的变形规律,分析了橡胶材料本构关系需要满足的约束条件;在此基础上,结合一个可以通过实验确定的描述平面拉伸变形状态下的橡胶材料力学特性函数,提出一种将该函数拓展为平面应力状态一般模型的方法,并给出了一个具体的函数形式,形成了一个新的不可压缩、各向同性的橡胶材料弹性本构模型.使用5组包含3种类型实验的数据和一组较全面的双轴测试数据对该模型进行了参数拟合,结果表明:该模型具有很好的拟合精度和更高的可靠性,仅用一种类型实验数据,如单轴拉伸或者平面拉伸等,也能获得较好的拟合结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号