首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分别采用玻碳( GC)、铂( Pt)和金( Au)电极研究了在Br?nsted酸性离子液体[ HMIm] HSO4中电解水制氢的催化活性,活性大小为Pt > Au >> GC。水中离子液体的含量对析氢电流影响很大,当[ HMIm] HSO4含量为30%(V/V)时,Pt电极催化电解水产氢的阈值电位高达-0.3 V (Ag丝为准参比电极, Ag QRE),在-0.5 V (Ag QRE)处电流密度高达110.52 mA/cm2,为相同条件下Au电极的15倍,GC电极的650倍。计算结果表明,Pt电极在该电解液中的反应活化能为5.68 kJ/mol。电极的高催化活性与[ HMIm] HSO4电离产生的质子有关,使水以H3 O+的形式捕集电子,效率更高。  相似文献   

2.
Y掺杂对氢氧化镍电极高温性能的影响   总被引:6,自引:0,他引:6  
合成了内掺稀土元素Y的β-Ni(OH)2和α-Ni(OH)2材料, 并通过XRD、TEM、CV 和充放电测试等方法研究了Y元素对这两种晶型活性材料的结构、形貌以及高温电化学性能方面的影响, 发现Y元素可显著提高β-Ni(OH)2和α-Ni(OH)2材料的高温性能, 且作用机理相同, 均是通过提高析氧过电位来改善镍电极的高温充电效率. 但是α-Ni(OH)2在高温下的相稳定性仍有待提高.  相似文献   

3.
PmClAn基膜修饰电极的电化学及催化性质研究   总被引:2,自引:0,他引:2  
聚苯胺作为电极修饰材料 ,已在传感器上显示出广泛的应用前景[1~ 4 ] .异丙醇 ( i- P)氧化[5,6 ] 是个较简单的反应 ,被广泛作为电催化研究的模型反应 .目前 ,i- P电化学氧化的研究集中于 Pt的多晶或单晶电极[7~ 9] ,Gonzales等 [10 ] 报道了 Pt- Sn共沉积的 PAn膜修饰电极上的异丙醇电氧化 ,但对复合材料的微观结构仍欠研究 .本文讨论 Pm Cl An基质性质对 Pt电沉积的影响 ,并探讨了 i- P在沉积 Pt微粒的 Pm Cl An功能膜电极上的氧化情况 .1 实验部分1 .1 电极的制备 聚间氯苯胺 ( Pm Cl An,本征态 ud,HCl掺杂态 d)采用乳液聚…  相似文献   

4.
在惰性气体的保护下,以无水甲醇为溶剂合成了两种以chxn(chxn=1(R),2(R)-环己二胺)为配体的镍配合物[NiIII(chxn)2Br]Br2和[NiⅡ(chxn)2]Br2,元素分析和红外光谱对其进行表征确定其组成。通过循环伏安法对镍的二价和三价配合物的电化学行为进行了研究,讨论了电极反应过程及其配体对不同价态中心离子氧化还原电势的影响,结果表明在甲醇介质中镍的二价配合物在铂电极上的电化学反应是准可逆过程,三价配合物在铂电极上的电化学反应是不可逆过程,循环伏安测试表明此类配合物能稳定Ni(Ⅲ)。  相似文献   

5.
合成了4种氮氧自由基桥联的五氟丙酸镍双核配合物[Ni(pfpr)2]2NITR·nH2O.对该配合物进行了元素分析和热重-差热分析,测定了红外光谱、紫外-可见光谱、电子顺磁共振和摩尔电导。讨论了配合物的结构,测量了[Ni(pfpr)2]2NITPhCl·4H2O和[Ni(pfpr)2]2NITPhOMe·4H2O的变温磁化率(4~300K),表明配合物具有非正规自旋态的Ni(Ⅱ)-Cu(Ⅱ)-Ni(Ⅱ)三核体系的磁行为。通过与理论公式拟合,得到交换积分J值分别为-152.8cm-1和-174.6cm-1,表明镍-自由基-镍之间有较强的反铁磁相互作用。  相似文献   

6.
研究了铜(Ⅱ)、镍(Ⅱ)离子模板高分子多乙烯多胺络合吸附剂的动态吸附金属离子的行为。5个周期的动态吸附结果表明,合成的铜(Ⅱ)、镍(Ⅱ)模板吸附剂分别对铜(Ⅱ)和镍(Ⅱ)金属离子具有稳定的吸附能力,其动态饱和吸附量达4.357mmolCu(Ⅱ)/g[铜(Ⅱ)模板吸附剂]、3.153mmolNi(Ⅱ)/g[镍(Ⅱ)模板吸附剂];相对误差分别为±1.5%和±2.2%.  相似文献   

7.
Pt(110)/Sb电极上甲酸的电催化氧化特征和动力学   总被引:1,自引:0,他引:1  
研究了Sb在Pt(110)晶面上不可逆吸附电化学特性及甲酸在Sbad修饰Pt(110)电极[Pt(110)/Sb]上的电催化氧化特征及其反应动力学.发现当扫描电位的上限Eu≤0.45V时,Sbad可稳定地吸附在Pt(110)表面上,从而有效地抑制了甲酸的解离吸附.与未修饰的Pt(110)上的结果相比,在Pt(110)/Sb上甲酸氧化的峰电位负移了0.35V.当θSb=0.126时,Pt(110)/Sb电极对甲酸的电催化活性最高.还研究了Pt(110)/Sb上甲酸氧化反应的动力学,定量解析了不同θSb下甲酸氧化的速度常数kf和传递系数β.  相似文献   

8.
抗坏血酸 ( AA)是生物化学和生物医学中的一种重要生理物质 ,因而在电催化和电化学传感器领域得到了广泛的研究 .对抗坏血酸的研究主要集中在两个方面 :一方面是研究 AA在各种电极上的电氧化机理、动力学参数及电催化机理 [1,2 ] ;另一方面是为了监测各种生物化学和生物医学中 AA的浓度发展起来的 AA传感器 .利用碳电极的各种预处理方法 [3,4 ]以及利用各种化学修饰电极 [5,6 ]来促进AA的电氧化动力学过程及解决 AA与各种共存物如多巴胺及脲酸等之间的相互干扰问题 .六氰合亚铁酸钴铜修饰电极 ( Co Cu HCF/Pt) [7] 在中性溶液中十分…  相似文献   

9.
利用表面增强拉曼光谱(SERS)研究了室温离子液体1-丁基-3-甲基咪唑氟硼酸盐([BMIM]BF4)中SCN-在Pt电极表面的吸附行为. 研究结果表明, 离子液体中SCN-在较宽的电位范围内吸附在Pt电极上, 且SCN-的吸附方式随着电位区间的变化而变化, 在不同的电位区间内检测到了不同的Stark位移: -0.9~0.4 V约为34 cm-1/V, 对应于S端吸附; -1.6~-1.2 V约为40 cm-1/V, 该区间以N端吸附为主, 中间电位区间为吸附方式的转变区, 且Pt电极在离子液体[BMIM]BF4中的零电荷电位约为-1.1 V(vs. Pt ).  相似文献   

10.
在不锈钢电极(SS)表面制得超细纤维状聚苯胺(superfine-fibrous PANI),经Pt微粒修饰后得到Pt微粒超细纤维聚苯胺复合电极[Pt/(superfine-fibrous PANI)/SS]。结果表明,直径50-100nm的Pt微粒均匀分布于直径约100nm的聚苯胺纤维上;Pt/(superfine-fibrous PANI)/SS电极对H2O2氧化具有很好的电催化活性。采用脉冲电流法(PGM)再将葡萄糖氧化酶(GOD)与间苯二胺(MPD)混合共聚嵌于Pt/(superilnefibrous PANI)/SS电极表面,获得了具有优异生物电化学传感特性的葡萄糖氧化酶电极。该酶电极最大响应电流密度im=917.4μA/cm^2,米氏常数K=9.339mmol/L;酶电极对葡萄糖响应快,对尿酸和抗坏血酸有很好的抗干扰性能。  相似文献   

11.
应用电化学循环伏安和原位FTIR反射光谱研究1,2-丙二醇在Pt电极上吸附和氧化过程。结果指出1,2-丙二醇的电氧化可按双途径进行。其一经1,2-丙二醇在Pt上解离吸附产物氧化至CO_2。但在较低电位下这些解离吸附产物(红外检测为CO_(ad)、[﹥C=CH_2]_(ad)等)累积吸附于电极上, 毒化Pt表面抑制其它反应。当电位大于0.3 V后它们一经生成即氧化脱附, 从而使1,2-丙二醇得以在未毒化Pt表面经反应中间体氧化至CO_2。在实验条件下,原位FTIR反射光谱检测到的反应中间体可能有HOC-CHOHCH_3(或CH_2OHCOCH_3)和HOOC-COCH_3(或HOOC-CHOHCH_3)等物种。  相似文献   

12.
通过直接吸附将亲和素固定在Pt电极表面,联于生物素标记的脱氧核糖核酸(DNA)探针,制备了电化学基因传感器,建立了Pt电极表面修饰单链脱氧核糖核酸(ssDNA)的方法。修饰电极与待测溶液中人工合成的转基因食品中常有的花椰菜花叶病毒35S启动子(CaMV35S)或根癌农杆菌终止子(NOS)DNA片段进行杂交,以邻菲罗林钴络合物[Co(phen)3^3 ]为杂交指示剂,循环伏安法测量,通过杂交前后指示剂峰电流的变化检测DNA杂交的量。研究了电极修饰、杂交反应及测量的适宜条件,在优化实验条件下,峰电流的差值与DNA杂交量之间有良好的线性关系,相关系数r=0.9996。杂交后的电极经热变性再生,可重复使用多次。  相似文献   

13.
合成了试剂5,7-二氯[杯(4)芳烃偶氮]氨基喹(CCAQ),研究了该试剂与镍(Ⅱ)的显色反应的适宜条件,在pH 10.8的缓冲介质中,在混合表面活性剂吐温40和CTMAB存在下,试剂与镍(Ⅱ)生成1∶1稳定配合物,体系至少可稳定8 h,λmax=620 nm,ε=1.83×105L.mol-1.cm-1,镍(Ⅱ)浓度在0.1~8μg/25 mL范围内服从比耳定律。方法已用于铝合金中镍(Ⅱ)的测定,RSD小于3.5%,回收率为98%~101%。  相似文献   

14.
Mn(Ⅱ)在铅电极上的超声电氧化   总被引:6,自引:1,他引:5  
苯甲醛电合成法大多是将媒质Mn(Ⅱ )在电解槽中电氧化为Mn(Ⅲ ) ,再利用Mn(Ⅲ )在化学反应器中氧化甲苯成苯甲醛[1 ] 。其中电氧化时用的阳极材料多为铅电极或复合电极[2 ,3] 。王岚等[4] 、林祥钦等[5] 报道了复合电极具有可提高氧的过电位 ,降低界面电阻 ,阻止基体氧化 ,改善电极催化活性和反应的选择性等作用。但它也存在制备繁琐、镀层易脱落、使用寿命不长等缺点。与铅电极一样 ,为获得较高的Mn(Ⅲ )的产率 ,施加的电解电压较高[6] ,能耗较大。超声波作为一种新的能量形式已用于有机合成[7] ,考虑到铅电极价廉易得且析氧电位较…  相似文献   

15.
本文报道一种合成标题配合物Pt(diphos)(CO)_2的简便方法及其与碳-卤键的氧化加成反应。在一氧化碳气氛存在下用NaBH_4还原[Pt(diphos)Cl_2]可“原位”得到[Pt(diphos)(CO)_2]的THF溶液,能与卤代烃发生氧化加成反应,并用~1H NMR和~(31)P NMR谱进行了研究。氧化加成反应按自由基非链式机理进行,加成产物[Pt(diphos)X_2]之一[Pt(d(i-Pr)pe)I_2]经过分子结构测定。反应能力与卤代烃和双膦螯合配体的电子性质有关。  相似文献   

16.
卢亚骏  王浩然  顾煜  徐岚  孙晓骏  邓意达 《化学学报》2012,70(16):1731-1736
设计实验研究了以无机镍盐和NaOH为原料,利用水热法制备Ni(OH)2纳米线,OH-和SO24-对于产物形貌的影响,并利用X射线衍射(XRD),傅立叶变换红外光谱(FTIR),透射电镜(TEM)等对材料结构、形貌和成分进行了表征,研究了Ni(OH)2纳米线形成的相关机理.结果表明,低的OH-浓度与高纯的SO24-水热环境是α-Ni(OH)2纳米线形成的关键因素.SO24-能够加速α-Ni(OH)2晶体沿[001]方向的生长,而OH-含量较低时,较低的库伦斥力不足以阻碍晶体沿[001]方向生长过程的进行.  相似文献   

17.
钛基体中离子注入镍和钼的电催化活性   总被引:2,自引:0,他引:2  
Grenness等发现,铂离子注入钨基体中,对H~+还原产生的电催化性能与纯铂相近,此后,Wolf等用离子注入和离子束混合技术制作了多种电极,其中Pt/RuO_2、Pt/C、Pt/WC电极用于H~+和O_2的电还原以及甲醇和甲酸的电氧化,其催化活性和稳定性均优于光滑的纯铂电极,目前,在其它方法制作的析氢电极材料中,最可能用于工业电解槽的为NiMo合金电极和复合Raney镍合金电极,本工作将镍和钼离子注入到钛基体中,研究了此电极在30 wt%KOH溶液中析氢电催化行为,并通过电子探针显微分析(EPMA)和X射线光电子能谱(XPS)分析,检测了离子注入电极的表面成分、注入元素的浓度分布及价态。  相似文献   

18.
杨志宇  胡猛  季小丹  雷立旭 《应用化学》2011,28(11):1323-1330
采用化学共沉淀法制备了镍铝和钴铝2种层状氢氧化物[ Ni4Al(OH)10]OH和[Co4Al(OH)10]NO3.将前者作为电极活性材料,后者及石墨作为正极导电添加剂,通过单纯形重心设计研究了正极中3种物质的最佳配比,使其大电流充放电性能得到有效地提高.结果表明,电极的性能与电极配方密切相关.当[ Ni4Al(OH)...  相似文献   

19.
采用缓冲溶液法制备Mn掺杂Ni_(1-x)Mn_x(OH)_2(x=0.1,0.2,0.3,0.4)。X射线衍射(XRD)测试表明x=0.1和0.2的样品主要是由β相组成;扫描电子显微镜(SEM)和氮气吸附-脱附测试表明掺杂Mn样品比不掺Mn的商用β-Ni(OH)2的颗粒更细小、多孔;恒流充放电测试表明,这种电极具有优良的高倍率性能,当x=0.2,电流密度800 mA·g-1时放电比容量为288.8 mAh·g-1,同等条件测试的商用β-Ni(OH)2放电比容量为198.7 mAh·g-1,循环580圈后仍有276 mAh·g-1的放电比容量,其衰减率为4.1%,而同等测试条件下的其它4种样品衰减率分别为46.1%(商用β-Ni(OH)2)、13.0%(x=0.1)、25.6%(x=0.3)、34.1%(x=0.4),可见这种Mn掺杂电极材料适合大电流密度充放电,能够改善镍电极的循环稳定性,降低镍电极成本。  相似文献   

20.
本文报道一种合成标题配合物Pt(diphos)(CO)2的简便方法及其与碳-卤键的氧化加成反应. 在一氧公碳气氛存在下用NaBH4还原[Pt(diphos)Cl2]可“原位"得到[Pt(diphos)(CO)2]的THF溶液, 能与卤代烃发生氧化加成反应, 并用^1H NMR和^3^1PNMR谱进行了研究. 氧化加成反应按自由基非链式机理进行, 加成产物[Pt(diphos)X2]之一[Pt(d(i-Pr)pe)I2]经过分子结构测定, 反应能力与卤代烃和双膦螯合配体的电子性质有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号