共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Theoretical simulation of the adsorption and dissociation of two NO molecules at the Cu2 , Cr3 and bridge Cr3 sites (b-Cr3 ) on the normal spinel CuCr2O4 (100) surface has been carded out by density functional theory calculations. The results show that the formed N-down and O-down NO dimers are negatively charged. The formation of stable O-down dimers on the surface leads to the great elongation of N-O bond, which contributes to the NO reduction. The transition-state calculations indicate that the decomposition of O-down NO dimer at the b-Cr3~ site is most favorable and N2O is the major reduction product. 相似文献
3.
Theoretical simulation of the adsorption and dissociation of two NO molecules at the Cu^2+, Cr^3+ and bridge Cr^3+ sites (b-Cr^3+) on the normal spinel CuCr2O4 (100) surface has been carried out by density functional theory calculations. The results show that the formed N-down and O-down NO dimers are negatively charged. The formation of stable O-down dimers on the surface leads to the great elongation of N-O bond, which contributes to the NO reduction. The transition-state calculations indicate that the decomposition of O-down NO dimer at the b-Cr^3+ site is most favorable and N2O is the major reduction product. 相似文献
4.
NiO(001)表面吸附CO的从头算研究 总被引:1,自引:0,他引:1
用量子化学B3LYP方法,以外加点电荷来封闭边界效应的簇为模型,计算了CO在NiO(001)面上不同吸附位置的吸附情况,并计算了振动频率。结果表明:1) CO的最佳吸附方式为C端垂直吸附在Ni位;2)吸附后CO间的振动频率蓝移13 cm-1;3)在O空缺、边和角等位置的吸附不如在完整表面的吸附稳定,这些均与实验结果一致。吸附后CO把主要起反键作用的C2s电子给予簇表面,使得吸附后CO键级加大,导致吸附后振动频率蓝移。并比较了Gaussian98 和Crystal98的计算结果,两者的结果能较好地符合。 相似文献
5.
The adsorption and phase formation of bromide on Ag(100) has been studied by chronocoulometry and surface X-ray scattering (SXS). With increasing electrode potential, bromide undergoes a phase transition from a lattice gas to an ordered c(2×2) structure (θ=0.5). The degree of lateral disorder was estimated by comparing the SXS- and the electrochemical measurements. Based on chronocoulometric experiments, a thermodynamic analysis of charge density data was performed to describe the bromide adsorption at the Ag(100) electrode. The Gibbs surfaces excess, electrosorption valencies, Esin–Markov coefficients, and the Gibbs energy of adsorption, lateral interaction energies as well as surface dipole moments have been estimated. The experimental θ versus E- isotherms are modeled employing (i) a quasi-chemical approximation as well as (ii) the results of a recent Monte Carlo simulation. An attempt is made to discuss the structure data and thermodynamic quantities of bromide adsorption on Ag(100) on the basis of the Grahame–Parsons model of the Helmholtz layer. 相似文献
6.
When Cu(110), Ni(l 10), Ag(110) surfaces are exposed to O2 at room temperature, one dimensional metal-oxygen strings grow in the < 001 > direction of the (110) surfaces. A similar phenomenon occurs in the adsorption of H2 on Ni( 110) surface at room temperature, where the one dimensional strings grow along the < 110 > direction. These phenomena are undoubtedly different from the adsorption induced reconstruction but are explained by the chemical reconstruction involving the formation of quasi-compounds and their self-ordering on the metal surfaces. The chemical reconstruction is indispensablly important to understand the structure and catalysis of alloy and bimetallic surfaces. Pt0.25Rh0.75(100) alloy surface being active for the reaction of NO with H2 is an interesting example. When the Pt-Rh(100) alloy surface is exposed to NO or O2 at arround 500 K, a p(3 × 1) ordered Rh-O over-layer is obtained on a Pt-enriched 2nd layer by the chemical reconstruction. Ordering of Rh-0 in the p(3 × 1) structure on the Pt(100) surface was reproduced by heating a Rh/Pt(100) bimetallic surface in O2, and the chemical reconstruction making the p(3 × 1) Rh-O overlayer on a Pt enriched 2nd layer was also proved by heating a Pt/Rh(100) bimetallic surface in O2 or NO. The activation mechanism of the Pt-Rh alloy and the Pt/Rh bimetallic surfaces by the chemical reconstruction was evidently shown by using a Pt deposited Rh(100), Pt/Rh(100), surface. That is, the Pt/Rh(100) is not so active for the reaction of NO with H2, but the reconstructed p(3 × 1)Rh-O/Pt-layer/Rh(100) surface is very active for the reaction. Therefore, it was concluded that the chemical reconstruction of the Pt-Rh catalyst makes the active surface which is composed of Rh-O and a Pt layer. 相似文献
7.
采用广义梯度密度泛函理论(GGA)的BLYP方法结合周期性平板模型,以原子簇Cu41为模拟表面,对DOPA醌分子在Cu(100)表面不同位置的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明通过相邻的羰基垂直吸附在表面的桥位是其最佳吸附方式,吸附能为247.2310kJ/mol;其次为顶位、顶位R45和穴位,吸附能分别为227.7162kJ/mol、220.7305kJ/mol和217.8456kJ/mol。Mulliken布居分析结果表明整个吸附体系发生了由Cu原子向DOPA醌分子的电荷转移。 相似文献
8.
1INTRODUCTIONTitaniumdioxideisatransition metaloxidethathasproveditsusefulnesinawiderangeofcatalyticandelectrochemicalapplica... 相似文献
9.
The adsorption of NO molecules on the perfect and defective (110) surfaces of SnO2 was studied with first-principles methods at the density-functional theory level. It was found that NO mainly interacts via
the nitrogen atom with the bridging oxygens of the stoichiometric surface while the coordinatively unsaturated surface Sn
atoms are less reactive. On the oxygen-deficient surface, NO is preferentially adsorbed at the vacancy positions, with the
nitrogen atom close to the former surface oxygen site. Regardless of the adsorption site, the unpaired electron is located
mainly on the NO molecule and only partly on surface Sn atoms. The results for the SnO2 surface are compared to literature results on the isostructural TiO2 rutile (110) surface.
Dedicated to Professor Karl Jug on the occasion of his 65th birthday 相似文献
10.
在密度泛函理论框架下,采用嵌入点电荷簇模型研究了NO在MgO(001)完整和缺陷表面上的吸附。研究结果表明:具有氧缺陷结构表面的催化活性较高,有利于NO键的削弱;当另一个NO分子进攻已吸附的NO分子时,NO键将进一步削弱,直致断裂,并伴有N2O产生,这与UPS和MIES实验观察到的现象一致。Mulliken布居分析指出,底物电子向NO转移,并填充到NO的*反键轨道上,从而导致NO键的削弱,并形成NO-。这也是可能导致形成NO-的原因。研究还表明,具有镁缺陷的MgO(001)表面对NO的解离没有催化活性。 相似文献
11.
12.
13.
The density functional theory was used to calculate the equilibrium structures of clusters serving as models of the sequence
of reaction steps in the oxidation of the (100) face of crystalline silicon and their relative heat effects. The formation
of all the intermediates on the (100) face proceeds without activation energy, suggesting the feasibility of avalanche-like
formation of an SiO2 film.
__________
Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 4, pp. 257–261, July–August, 2007. 相似文献
14.
Fabrizio Cinquini Livia Giordano Gianfranco Pacchioni 《Theoretical chemistry accounts》2008,120(4-6):575-582
We have studied the adsorption of Au, Pd, and Pt atoms on the NiO(100) surface and on NiO/Ag(100) thin films using plane wave DFT+U calculations. The scope of this work is to compare the adsorption properties of NiO, a reducible transition metal oxide, with those of MgO, a simple binary oxide with the same crystal structure and similar lattice parameter. At the same time, we are interested in the adsorption characteristics of NiO ultra-thin films (three atomic layers) deposited on Ag(100) single crystals. Also in this case the scope is to compare NiO/Ag(100) with the corresponding MgO/Ag(100) films which show unusual properties for the case of Au adsorption. The results show that the transition metal atoms bind in a similar way on NiO(100) and NiO/Ag(100) films, with Pt, Pd, and Au forming bonds of decreasing strength in this order. No charging effects occur for Au adsorbed on NiO/Ag(100) films, at variance with MgO/Ag(100). The reasons are analyzed in terms of work function of the metal/oxide interface. Possible ways to modify this property by growing alternate layers of MgO and NiO are discussed. 相似文献
15.
Bis(1,5‐cyclooctadiene) nickel [Ni(COD)2] was employed as a nickel precursor to prepare nickel oxide nanoparticles upon high‐surface‐area mesoporous silica. Under protection of argon, Ni(COD)2 was dissolved in tetrahydrofuran (THF) to react with surface silanols of mesoporous silica SBA‐15, which formed a black powder after completion of the surface reaction. Calcination of the powder produced ultrafine NiO inside the mesoporous silica matrix, which was evidenced by X‐ray diffraction, N2 adsorption–desorption, transmission electron microscopy and thermogravimetric analysis. The thermogravimetric analysis suggests that NiO formation is a result of surface nickel species calcination, whereas structural characterization clearly show that NiO nanoparticles of <5 nm are evenly distributed inside the silica SBA‐15 matrix and mesoporosity is well preserved upon calcinations and NiO formation. The surface reaction between Ni(COD)2 and surface silanols was found for the first time, and the method used here may be extended conveniently to prepare other metal oxide nanoparticles upon high‐surface‐area supports as well. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
16.
17.
Jian Ming Hu Yi Li Yong Fan Zhang Gui Xiao Jia 《Journal of solid state chemistry》2004,177(8):2763-2771
The chemisorption of cyanato radial (OCN) on Cu (100) surface is studied by using density functional theory (DFT) and the cluster model method. Cu14 cluster is used to simulate the surface. Vertical bonding geometries with the nitrogen or oxygen atom down, and a parallel bonding geometry are considered, respectively. The present calculations show that cyanato-N species absorbed on the surface is more favorable than the other configurations. It indicates that OCN species is linearly bonded to the Cu (100) surface via the nitrogen atom, and is in good agreement with the experimental result. The cyanato-N species at the bridge site is most stable. For cyanato-N, the calculated symmetric and asymmetric OCN stretch frequencies are all blue-shifted compared with the calculated gaseous values, which is consistent with the experiment result. The charge transfer from the surface to OCN causes a work function increase on the surface. Bonding of OCN to the metal surface is largely ionic. 相似文献
18.
The HCNH and CNH2 adsorption on different coordination sites of Cu(100) was theoretically studied considering the cluster approach. The present calculations show that the bridge site is the most favorite for CNH2 perpendicularly adsorbed on the Cu(100) surface via the C atom. For HCNH absorbed on the Cu(100) surface, the parallel adsorption mode with the C and N atoms nearly directly above the adjacent top sites of Cu(100) surface is the most favored. Both CNH2 and HCNH are strongly bound to the Cu(100) surface with CNH2 which is lightly stable (2.51 kJ·mol^-1), indicating that both species may be co-adsorbed on the Cu(100) surface. 相似文献
19.
As an important phthalate plasticizer, dibutyl phthalate (DBP) was employed to decrease the bonding temperature of poly(methyl methacrylate) (PMMA) microfluidic chips in this work based on the fact that it can lower the glass transition temperature of PMMA. The channel plates of the PMMA microchips were fabricated by the UV-initiated polymerization of prepolymerized methyl methacrylate between a silicon template and a PMMA plate. Prior to bonding, DBP solution in isopropanol was coated on PMMA covers. When isopropanol in the coating was allowed to evaporate in air, DBP was left on the PMMA covers. Subsequently, the DBP-coated covers were bonded to the PMMA channel plates at 90 °C for 10 min under pressure. The channels in the complete microchips had been examined by optical microscope and scanning electron microscope. The results indicated that high quality bonding was achieved below the glass transition temperature of PMMA (∼105 °C). The performance of the PMMA microfluidic chips sealed by plasticizer-assisted bonding has been demonstrated by separating and detecting ionic species by capillary electrophoresis in connection with contactless conductivity detection. 相似文献
20.
Christian Erich Zybill Mahmoud Abdel-Hafiez Sami Allam Tharwat El Sherbini 《Progress in Solid State Chemistry》2007,35(2-4):469-480
Ferroelectric thin films form an equilibrium domain structure compatible with their respective crystallographic symmetry. In tetragonal (111) PZT, 90° domains prevail; in (pseudo-tetragonal) (100) SBT both 90° and 180° domains are present. The size of 90° domains has been measured for e.g., PZT as slabs of 15 nm width. Domain size is a result of stress minimization in the film during the paraelectric (PE) → ferroelectric (FE) transition. A precise and regular domain pattern for (111) PZT and (100) SBT films has been investigated in detail by TMSFM. Single domains can be addressed mechanically with the tip of an AFM. Such single domain switching corresponds to a data storage density of 200 Gbit/inch2. Applications of ferroelectric and high- paraelectric materials for e.g., non-volatile data storage replacing DRAM devices or as sensors in infrared cameras are increasingly becoming popular. 相似文献