首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The possibility of utilization of calcium or magnesium phosphates of various composition for heavy and non-ferrous metal extraction from aqueous solutions has been studied. The efficiency of the phosphates in removal of Pb(II), Cr(III) and Fe(III) ions has been shown to decrease in the following sequence: Mg3(PO4)2>MgNH4PO4>Ca3(PO4)2>CaHPO4>Ca10(PO4)6(OH)2 which is inverse to their hydrolytic stability series. It has been established that phosphates of non-apatite structure are capable of binding up to 12 mmol g−1 of the named heavy metals by a chemical interaction. Hydroxyapatite interacts with the polyvalent metal ions via either the above mentioned or ion-exchange mechanism, depending on preparation method used for the apatite and the nature of metal.  相似文献   

2.
Release of heavy metals into water as a result of industrial activities may pose a serious threat to the environment. The objective of this study is to assess the uptake of Cu2+ from aqueous solutions onto multi-walled carbon nanotubes (MWCNT). The potential of the t-MWCNT to remove Cu2+ cations from aqueous solutions was investigated in batch reactor under different experimental conditions. The processing parameters such as initial concentration of Cu2+ ions, temperature, and adsorbent mass were also investigated. Copper uptake was quantitatively evaluated using the Langmuir, Freundlich and Dubinin–Kaganer–Radushkevich (DKR) models. In addition, the adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 12.34 mg/g of Cu2+ cations on t-MWCNT. Various thermodynamic parameters, such as ΔG0, ΔH0 and ΔS0 were calculated. The thermodynamics of Cu2+ cations adsorption onto t-MWCNT system pointed at spontaneous and endothermic nature of the process. Using the second-order kinetic constants, the activation energy of adsorption (Ea) was determined as 27.187 kJ/mol according to the Arrhenius equation.  相似文献   

3.
The removal of Cr (VI) from aqueous solutions using Alligator weed, a freshwater macrophyte, was investigated in batch studies. Various factors including solution pH, Cr (VI) concentrations, agitation time, and temperature were taken into account and promising results obtained. An initial solution pH of 1.0 was most favorable for Cr (VI) removal. The kinetic data were analyzed using several models, including the pseudo-second-order equation, external diffusion model, and intraparticle diffusion model. The comparison gave insight about the mechanism of adsorption and potential rate controlling step. The results suggested that the Cr (VI) adsorption at all temperatures was best represented by the pseudo-second-order equation. The external film diffusion played an important role in the adsorption mechanism. The Freundlich, Langmuir and Langmuir-Freundlich isotherms for the present system were analyzed. The best interpretation for the equilibrium data at different temperatures was given by the Langmuir-Freundlich isotherm. The Alligator weed could serve as low-cost adsorbent to remove Cr (VI) from aqueous solutions.  相似文献   

4.
A novel adsorbent, aminated and protonated mesoporous alumina, was prepared and employed for the removal of copper from aqueous solution at concentrations between 5 and 30 mg/l, in batch equilibrium experiments, in order to determine its adsorption properties. The removal of copper by the adsorbents increases with increasing adsorbent dosages. The adsorption mechanism is assumed to be an ion exchange between copper and the hydrogen ions present on the surface of the mesoporous alumina. The adsorbent was characterized by XRD, TEM, SEM, and BET methods. The sorption data have been analyzed and fitted to linearized adsorption isotherm of the Freundlich, Langmuir, and Redlich-Peterson models. The batch sorption kinetics have been tested for first-order, pseudo-first-order, and pseudo-second-order kinetic reaction models. The rate constants of adsorption for all these kinetic models have been calculated. Results also showed that the intraparticle diffusion of Cu(II) on the mesoporous catalyst was the main rate-limiting step.  相似文献   

5.
A laboratory batch study has been performed to study the effect of various physic-chemical factors such as initial metal ion concentration, solution pH, and amount of adsorbent, contact time and temperature on the adsorption characteristics of zinc (Zn2+) metal ions onto kaolin. It has been found that the amount of adsorption of zinc metal ion increases with initial metal ion concentration, contact time, solution pH but decreases with the amount of adsorbent and temperature of the system. Kinetic experiments clearly indicate that adsorption of zinc metal ion (Zn2+) on kaolin is a two steps process: a very rapid adsorption of zinc metal ion to the external surface is followed by possible slow decreasing intra-particle diffusion in the interior of the adsorbent which has also been confirmed by intra-particle diffusion model. The equilibrium time is found to be in the order of 60 min. Overall the kinetic studies showed that the zinc adsorption process followed pseudo-second-order kinetics among pseudo-first-order and intra-particle diffusion model. The different kinetic parameters including rate constant are determined at different initial metal ion concentration, solution pH, amount of adsorbent and temperature respectively. The equilibrium adsorption results are analyzed by both Langmuir and Freundlich models to determine the mechanistic parameters associated with the adsorption process. The value of separation factor, RL from Langmuir equation also gives an indication of favorable adsorption. Finally thermodynamic parameters are determined at three different temperatures and it has been found that the adsorption process is exothermic due to negative ΔH° accompanied by decrease in entropy change and Gibbs free energy change (ΔG°).  相似文献   

6.
Activated palm kernel shell carbon (APKSC) was used to remove U(VI) from aqueous solutions in a batch system. The adsorption kinetics, isotherms, and effects of various parameters, such as temperature, contact time, solution pH, adsorbent dosage, and initial U(VI) concentration on the U(VI) adsorption process were studied. Equilibrium was reached after 120 min in the range of studied U(VI) concentrations and temperatures. U(VI) uptake was insignificantly affected by temperature, but was highly pH dependent, and the optimum pH for removal was 5.5. U(VI) removal efficiency increased with the increasing adsorbent dosage. U(VI) sorption capacity increased with increasing initial U(VI) concentration; any further increases in initial U(VI) concentration above a certain point caused insignificant changes in U(VI) sorption capacity. Isotherm data could be described by the Langmuir isotherm model with a maximum U(VI) adsorption capacity of 51.81 mg/g. Kinetic data were fitted to pseudo-first-order and pseudo-second-order equations, which suggested that the U(VI) adsorption onto APKSC was better reproduced by the pseudo-second-order model rather than pseudo-first-order model. Our results indicated that APKSC might be used as a cheap adsorbent in the treatment of uranium-containing wastewater.  相似文献   

7.
This study examined the feasibility of removing direct dyes C.I. Direct Yellow 86 (DY86) and C.I. Direct Red 224 (DR224) from aqueous solutions using carbon nanotubes (CNTs). The effects of dye concentration, CNT dosage, ionic strength and temperature on adsorption of direct dyes by CNTs were also evaluated. Pseudo second-order, intraparticle diffusion and Bangham models were adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. Additionally, this study used the Langmuir, Freundlich, Dubinin and Radushkevich (D-R) and Temkin isotherms to describe equilibrium adsorption. The adsorption percentage of direct dyes increased as CNTs dosage, NaCl addition and temperature increased. Conversely, the adsorption percentage of direct dyes decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. Based on the regressions of intraparticle diffusion and Bangham models, experimental data suggest that the adsorption of direct dyes onto CNTs involved intraparticle diffusion, but that was not the only rate-controlling step. The equilibrium adsorption of DR86 is best fitted in the Freundlich isotherm and that of DR224 was best fitted in the D-R isotherm. The capacity of CNTs to adsorb DY86 and DR224 was 56.2 and 61.3 mg/g, respectively. For DY86, enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were 13.69 kJ/mol and 139.51 J/mol K, respectively, and those for DR224 were 24.29 kJ/mol and 172.06 J/mol K, respectively. The values of DeltaH(0), DeltaG(0) and E all indicate that the adsorption of direct dyes onto CNTs was a physisorption process.  相似文献   

8.
《Comptes Rendus Chimie》2015,18(2):204-214
In this study, surfactant-modified pillared montmorillonites (MMT) were prepared using cetyltrimethylammonium bromide (CTAB) by the intercalation method and used as adsorbent to remove bentazon from aqueous solutions. The main compositions of MMT and CTAB/MMT were characterized by Fourier transform–infrared spectroscopy (FT–IR), X-ray diffraction (XRD), scanning electron micrography (SEM) and energy dispersive X-ray (EDX) spectroscopy. The removal efficiency of bentazon was studied as a function of adsorbent dosage, pH, initial bentazon concentration and ionic strength (sodium carbonate, sodium bicarbonate, sodium sulfate and sodium chloride). The removal efficiency of bentazon by CTAB/MMT was more than that of MMT in similar conditions. By increasing adsorbent dosage and initial bentazon concentration, the removal efficiency was increased and declined, respectively. The results showed that the maximum adsorption of organo-modified montmorillonite was obtained at pH 3. The maximum adsorption capacity was estimated to be 500 mg/g at pH 3 and room temperature. The study of the adsorption kinetic model revealed that the pseudo-second order model was the best applicable one to describe the adsorption of bentazon onto CTAB/MMT. Adsorption data were analyzed by both Langmuir and Freundlich adsorption isotherms and the results showed that it was better described by the Langmuir model. The adsorption capacities of the samples were found to increase with Na2CO3 anion saturation, while they decreased in the presence of NaHCO3, Na2SO4 and NaCl.  相似文献   

9.
This work was aimed at removing crystal violet (CV) from an aqueous solution via an ultrasound-aided sorption process. Different operational parameters, such as contact time, ultrasonic power, and the sorbent dosage, were investigated. The results indicated that the sorption process was more rapid compared with the previously stated process; a sorption equilibrium was obtained after 1.5 h. The increase in the dose from 0.02 to 5.0 g/L increased the adsorption efficiency by 100%. The decolorization of the CV pigment occurred very rapidly at the highest sound power, 200 W, and it reached ~85%. The kinetics study indicated that the sorption process fitted the pseudo-second-order model with the chemisorption mechanism. The sorption isotherm data were also interpreted by the mass-transfer model, which established the intraparticle diffusion. Additionally, to estimate the rate-limiting step mechanisms, the intraparticle diffusion was not considered as the sole rate-controlling step. The maximum sorption capacity (qmax) increased from 19.0 to 24 mg/g during the ultrasound and indicated the positive synergistic effect of the ultrasound. The proposed sonosorption technique is a low cost-effective method for purifying water and wastewater from organic pollutants.  相似文献   

10.
活性艳红X-3B(C.I.ReactionRed 2)是一种单偶氮染料,其应用范围广泛,可用于棉、粘纤、涤/棉、锦纶、蚕丝、羊毛、锦/粘等织物的染色和丝绸的印花,因此其废水量大且色度深。目前染料废水的生物处理方法脱色效果差、占地面积大、处理周期长,传统的物理法和化学法也存在着成本高、不能彻底矿化染料分子等缺点。近年来发展起来的光化学处理染料废水的方法及各种光化学组合技术日益受到人们关注,但其中使用的普通紫外灯存在使用寿命短、启动慢、发光不稳定、电极材料易损等缺点[1],致使光化学方法处理废水的成本很高。本文利用微波产生的高频…  相似文献   

11.
Abstract

EDCC-MCM-41, a novel ethylenediamine derivative of MCM-41 was synthesized from a sugar industry waste, bagasse fly ash. Studies were carried out on its ability to remove Cr(VI) from aqueous solution. Its performance was also compared with that of unmodified MCM-41 and an already known derivative NH2-MCM-41 (both also synthesized from bagasse fly ash) at the same experimental conditions. Results show that the novel adsorbent produced a better sorption performance (adsorption capacity of 49.04?mg g?1) than MCM-41 and NH2-MCM-41 which produced adsorption capacities of 13.78?mg g?1 and 25.29?mg g?1 respectively. Thermodynamics, kinetics and isotherm studies confirm that the sorption process involving the novel adsorbent is favorable for Cr(VI) and can best be represented by pseudo-second-order kinetics model. The sorption process was also found to be multistep, involving both film diffusion and intraparticle diffusion into the pores on the adsorbent’s surface.

Abbreviations: BFA: Bagasse Fly Ash; MCM-41: Mobil Composition of matter no. 41; NH2-MCM-41: mine functionalized MCM-41; EDCC-MCM-41: Ethylenediamine grafted MCM-41; qe: Mass of material adsorbed at equilibrium per mass of adsorbent; qt: Mass of material adsorbed at any time t per mass of adsorbent; C0: The initial concentration; Ce: The residual concentration at equilibrium; Ct: Residual concentration at any time t; W: The weight of adsorbents; rRMSD: Root mean square deviation; R: Gas constant  相似文献   

12.
Removal nickel from the aquatic environment is a serious environmental problem in view of public health. The present article studies the applicability of activated carbon, obtained from graphite, as a source of adsorbents to remove nickel from the aqueous polluted water. Activated carbon was obtained by steam activation of graphite and then was oxidized by nitric acid followed by modification with Tetraethylenepentamine (TEPA). The applicability of graphite activated carbon (GAC), and modified activated carbon by Tetraethylenepentamine (GACA) to remove nickel ions Ni(II) from aqueous media was studied. The effect of pH, initial concentration, contact time, and the temperature was evaluated during Ni(II) removal operating in a batch process. Experimental results show that the studied activated carbon have a good adsorption capacity for Ni(II) ions and could reduce the concentrations of it in the groundwater. A maximum removal efficient of Ni(II) was observed at 55°C. The experimental data showed an endothermic and spontaneous process, which was fitted to Langmuir isotherm. Based on our results, we can conclude that it is possible to use GAC and GACA for removing Ni(II) effectively from groundwater.  相似文献   

13.
The biosorption of nickel(II) ions from aqueous solution by Acacia leucocephala bark was studied in a batch adsorption system as a function of pH, initial metal ion concentration, adsorbent dosage, contact time and temperature. The maximum Ni(II) adsorption was obtained at pH 5. Further, the biosorbents were characterized by Fourier Transformer Infrared Spectroscopy (FTIR). The experimental data were analysed using three sorption kinetic models viz., the pseudo-first- and second-order equations and the intraparticle diffusion model. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process. The equilibrium nature of Ni(II) adsorption at different temperatures of 30, 40 and 50 °C have been described by the Langmuir and Freundlich isotherm models. The equilibrium data fit well Langmuir isotherm. The monolayer adsorption capacity of A. leucocephala bark as obtained from Langmuir isotherm at 30 °C was found to be 294.1 mg/g. The Chi-square (χ2) and Sum of the square errors (SSE) tests were also carried out to find the best fit adsorption isotherm and kinetic model. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated indicating that this system was a spontaneous and endothermic process. Present investigation emphasized that A. leucocephala bark may be utilized as a low cost adsorbent for nickel removal.  相似文献   

14.
In our current research, an intriguing magnetic nano sorbent Fe3O4@Zr-MOF was synthesized in the lab. We used this adsorbent for successfully removing tetracycline (TC) from water. We performed a number of experiments and studies to further support this, including the following: vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller surface area (BET). Our studies have determined that the Fe3O4@Zr-MOF boasts a considerable surface area of 868 m2/g with the highest adsorption capacity (qmax) of 942.12 mg/g. Study the factors that effect on adsorption process such as pH, TC concentration, adsorbent dose, and temperature. The adsorption isotherm was fitted to the Langmuir equation, whereas the kinetic isotherm to the pseudo-second-order equation. The adsorption process was chemisorption as well as the adsorption energy was 20 kJ/mol. Adsorption thermodynamics indicated that the adsorption process was both endothermic and spontaneous. As temperatures increased, the amounts of materials absorbed also increased. The Fe3O4@Zr-MOF has magnetic properties as it easily to remove from the solution after adsorption process. The adsorbent was used for five cycles with high efficiency and without change in the chemical composition as well as the XRD was the same before and after reusability. The mechanism of the interaction between Fe3O4@Zr-MOF and TC was expected on: Electrostatic interaction, π-π interaction, hydrogen bonding, and pore filling. The adsorption results were optimized using Box Behnken-design (BBD).  相似文献   

15.
Biosorption of Cu2+ and Pb2+ by Cladop- hora fascicularis was investigated as a function of initial pH, initial heavy metal concentrations, temperature and other co-existing ions. Adsorption equilibriums were well described by Langmuir and Freundlich isotherm models. The maximum adsorption capacities were 1.61 mmol/g for Cu2+ and 0.96 mmol/g for Pb2+ at 298 K and pH 5.0. The adsorption processes were endothermic and biosorption heats calculated by the Langmuir constant b were 39.0 and 29.6 kJ/mol for Cu2+ and Pb2+, respectively. The biosorption kinetics followed the pseudo-second order model. No significant effect on the uptake of Cu2+ and Pb2+ by co-existing cations and anions was observed, except EDTA. Desorption experiments indicated that Na2EDTA was an efficient desorbent for the recovery of Cu2+ and Pb2+ from biomass. The results showed that Cladophora fascicularis was an effective and economical biosorbent material for the removal and recovery of heavy metal ions from wastewater.  相似文献   

16.
The modified Fe3O4 nano-particles with the extracted pectin from the cell wall of Azolla filicoloides(FN-EP) can remove methyl orange as a water-soluble azo dye from waste water better than Azolla and the extracted pectin from Azolla(EPA),alone.It could be due to more crowding the main functional groups of uptake after binding pectin with nano-particles.Thermodynamic studies showed that adsorption equilibrium constant(KL) and maximum adsorption capacities(Qmax) were increased with decreasing temperature(exothermic).The maximum uptake capacity(Qmax) of dye by FN-EP in a batch reactor was 0.533,0.498 and 0.446 mmol/g at 5,25 and 50℃,respectively.The enthalpy change(△H) and entropy change(△S) were -15.31 kJ/mol and -0.02434 kJ/mol K,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号